File size: 4,180 Bytes
2916d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import json
from pathlib import Path

import yaml
from huggingface_hub import hf_hub_download

from common.log import logger


def download_bert_models():
    with open("bert/bert_models.json", "r") as fp:
        models = json.load(fp)
    for k, v in models.items():
        local_path = Path("bert").joinpath(k)
        for file in v["files"]:
            if not Path(local_path).joinpath(file).exists():
                logger.info(f"Downloading {k} {file}")
                hf_hub_download(
                    v["repo_id"],
                    file,
                    local_dir=local_path,
                    local_dir_use_symlinks=False,
                )


def download_slm_model():
    local_path = Path("slm/wavlm-base-plus/")
    file = "pytorch_model.bin"
    if not Path(local_path).joinpath(file).exists():
        logger.info(f"Downloading wavlm-base-plus {file}")
        hf_hub_download(
            "microsoft/wavlm-base-plus",
            file,
            local_dir=local_path,
            local_dir_use_symlinks=False,
        )


def download_pretrained_models():
    files = ["G_0.safetensors", "D_0.safetensors", "DUR_0.safetensors"]
    local_path = Path("pretrained")
    for file in files:
        if not Path(local_path).joinpath(file).exists():
            logger.info(f"Downloading pretrained {file}")
            hf_hub_download(
                "litagin/Style-Bert-VITS2-1.0-base",
                file,
                local_dir=local_path,
                local_dir_use_symlinks=False,
            )


def download_jp_extra_pretrained_models():
    files = ["G_0.safetensors", "D_0.safetensors", "WD_0.safetensors"]
    local_path = Path("pretrained_jp_extra")
    for file in files:
        if not Path(local_path).joinpath(file).exists():
            logger.info(f"Downloading JP-Extra pretrained {file}")
            hf_hub_download(
                "litagin/Style-Bert-VITS2-2.0-base-JP-Extra",
                file,
                local_dir=local_path,
                local_dir_use_symlinks=False,
            )


def download_jvnv_models():
    files = [
        "jvnv-F1-jp/config.json",
        "jvnv-F1-jp/jvnv-F1-jp_e160_s14000.safetensors",
        "jvnv-F1-jp/style_vectors.npy",
        "jvnv-F2-jp/config.json",
        "jvnv-F2-jp/jvnv-F2_e166_s20000.safetensors",
        "jvnv-F2-jp/style_vectors.npy",
        "jvnv-M1-jp/config.json",
        "jvnv-M1-jp/jvnv-M1-jp_e158_s14000.safetensors",
        "jvnv-M1-jp/style_vectors.npy",
        "jvnv-M2-jp/config.json",
        "jvnv-M2-jp/jvnv-M2-jp_e159_s17000.safetensors",
        "jvnv-M2-jp/style_vectors.npy",
    ]
    for file in files:
        if not Path(f"model_assets/{file}").exists():
            logger.info(f"Downloading {file}")
            hf_hub_download(
                "litagin/style_bert_vits2_jvnv",
                file,
                local_dir="model_assets",
                local_dir_use_symlinks=False,
            )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--skip_jvnv", action="store_true")
    parser.add_argument(
        "--dataset_root",
        type=str,
        help="Dataset root path (default: Data)",
        default=None,
    )
    parser.add_argument(
        "--assets_root",
        type=str,
        help="Assets root path (default: model_assets)",
        default=None,
    )
    args = parser.parse_args()

    download_bert_models()

    download_slm_model()

    download_pretrained_models()

    download_jp_extra_pretrained_models()

    if not args.skip_jvnv:
        download_jvnv_models()

    if args.dataset_root is None and args.assets_root is None:
        return

    # Change default paths if necessary
    paths_yml = Path("configs/paths.yml")
    with open(paths_yml, "r", encoding="utf-8") as f:
        yml_data = yaml.safe_load(f)
    if args.assets_root is not None:
        yml_data["assets_root"] = args.assets_root
    if args.dataset_root is not None:
        yml_data["dataset_root"] = args.dataset_root
    with open(paths_yml, "w", encoding="utf-8") as f:
        yaml.dump(yml_data, f, allow_unicode=True)


if __name__ == "__main__":
    main()