Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,38 +6,25 @@ import kornia as K
|
|
| 6 |
from kornia.core import Tensor
|
| 7 |
from kornia.contrib import FaceDetector, FaceDetectorResult, FaceKeypoint
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
def draw_keypoint(img: np.ndarray, det: FaceDetectorResult, kpt_type: FaceKeypoint) -> np.ndarray:
|
| 13 |
kpt = det.get_keypoint(kpt_type).int().tolist()
|
| 14 |
return cv2.circle(img, kpt, 2, (255, 0, 0), 2)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
def detect(img_raw):
|
| 19 |
-
|
| 20 |
# preprocess
|
| 21 |
if img_raw is not None and len(img_raw.shape) == 3:
|
| 22 |
-
img = K.image_to_tensor(img_raw, keepdim=False)
|
| 23 |
img = K.color.bgr_to_rgb(img.float())
|
| 24 |
-
|
| 25 |
-
|
| 26 |
# create the detector and find the faces !
|
| 27 |
face_detection = FaceDetector()
|
| 28 |
-
|
| 29 |
with torch.no_grad():
|
| 30 |
dets = face_detection(img)
|
| 31 |
dets = [FaceDetectorResult(o) for o in dets[0]]
|
| 32 |
-
|
| 33 |
img_vis = img_raw.copy()
|
| 34 |
-
|
| 35 |
vis_threshold = 0.8
|
| 36 |
-
|
| 37 |
for b in dets:
|
| 38 |
if b.score < vis_threshold:
|
| 39 |
continue
|
| 40 |
-
|
| 41 |
# Draw face bounding box
|
| 42 |
img_vis = cv2.rectangle(img_vis, b.top_left.int().tolist(), b.bottom_right.int().tolist(), (0, 255, 0), 4)
|
| 43 |
# Draw Keypoints
|
|
@@ -46,30 +33,26 @@ def detect(img_raw):
|
|
| 46 |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.NOSE)
|
| 47 |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.MOUTH_LEFT)
|
| 48 |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.MOUTH_RIGHT)
|
| 49 |
-
|
| 50 |
return img_vis
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
title = "Kornia Face Detection"
|
| 55 |
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Face Detection.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them</p>"
|
| 56 |
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://kornia.readthedocs.io/en/latest/applications/face_detection.html' target='_blank'>Kornia Face Detection Tutorial</a></p>"
|
| 57 |
-
|
| 58 |
examples = ['sample.jpg']
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
gr.
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 6 |
from kornia.core import Tensor
|
| 7 |
from kornia.contrib import FaceDetector, FaceDetectorResult, FaceKeypoint
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
def draw_keypoint(img: np.ndarray, det: FaceDetectorResult, kpt_type: FaceKeypoint) -> np.ndarray:
|
| 10 |
kpt = det.get_keypoint(kpt_type).int().tolist()
|
| 11 |
return cv2.circle(img, kpt, 2, (255, 0, 0), 2)
|
| 12 |
|
|
|
|
|
|
|
| 13 |
def detect(img_raw):
|
|
|
|
| 14 |
# preprocess
|
| 15 |
if img_raw is not None and len(img_raw.shape) == 3:
|
| 16 |
+
img = K.utils.image_to_tensor(img_raw, keepdim=False)
|
| 17 |
img = K.color.bgr_to_rgb(img.float())
|
|
|
|
|
|
|
| 18 |
# create the detector and find the faces !
|
| 19 |
face_detection = FaceDetector()
|
|
|
|
| 20 |
with torch.no_grad():
|
| 21 |
dets = face_detection(img)
|
| 22 |
dets = [FaceDetectorResult(o) for o in dets[0]]
|
|
|
|
| 23 |
img_vis = img_raw.copy()
|
|
|
|
| 24 |
vis_threshold = 0.8
|
|
|
|
| 25 |
for b in dets:
|
| 26 |
if b.score < vis_threshold:
|
| 27 |
continue
|
|
|
|
| 28 |
# Draw face bounding box
|
| 29 |
img_vis = cv2.rectangle(img_vis, b.top_left.int().tolist(), b.bottom_right.int().tolist(), (0, 255, 0), 4)
|
| 30 |
# Draw Keypoints
|
|
|
|
| 33 |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.NOSE)
|
| 34 |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.MOUTH_LEFT)
|
| 35 |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.MOUTH_RIGHT)
|
|
|
|
| 36 |
return img_vis
|
| 37 |
|
|
|
|
|
|
|
| 38 |
title = "Kornia Face Detection"
|
| 39 |
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Face Detection.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them</p>"
|
| 40 |
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://kornia.readthedocs.io/en/latest/applications/face_detection.html' target='_blank'>Kornia Face Detection Tutorial</a></p>"
|
|
|
|
| 41 |
examples = ['sample.jpg']
|
| 42 |
|
| 43 |
+
with gr.Blocks(title=title) as demo:
|
| 44 |
+
gr.Markdown(f"# {title}")
|
| 45 |
+
gr.Markdown(description)
|
| 46 |
+
|
| 47 |
+
with gr.Row():
|
| 48 |
+
input_image = gr.Image(type="numpy", label="Input Image")
|
| 49 |
+
output_image = gr.Image(type="numpy", label="Detected Faces")
|
| 50 |
+
|
| 51 |
+
gr.Examples(examples, inputs=input_image)
|
| 52 |
+
|
| 53 |
+
input_image.change(fn=detect, inputs=input_image, outputs=output_image)
|
| 54 |
+
|
| 55 |
+
gr.Markdown(article)
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
demo.launch()
|