rwheel commited on
Commit
b522580
1 Parent(s): 44d3e73

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -7,11 +7,11 @@ import torch
7
  import kornia as K
8
  from kornia.core import Tensor
9
 
10
- def edge_detection(file, detector):
11
 
12
- img_bgr: np.ndarray = cv2.imread(file, cv2.IMREAD_COLOR)
13
 
14
- x_bgr: torch.Tensor = K.utils.image_to_tensor(img_bgr) # CxHxWx
15
  x_bgr = x_bgr[None,...].float() / 255.
16
 
17
  x_rgb: torch.Tensor = K.color.bgr_to_rgb(x_bgr)
@@ -19,28 +19,28 @@ def edge_detection(file, detector):
19
 
20
 
21
  if detector == '1st order derivates in x':
22
- grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=1) # BxCx2xHxW
23
  grads_x = grads[:, :, 0]
24
  grads_y = grads[:, :, 1]
25
 
26
  output = K.utils.tensor_to_image(1. - grads_x.clamp(0., 1.))
27
 
28
  elif detector == '1st order derivates in y':
29
- grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=1) # BxCx2xHxW
30
  grads_x = grads[:, :, 0]
31
  grads_y = grads[:, :, 1]
32
 
33
  output = K.utils.tensor_to_image(1. - grads_y.clamp(0., 1.))
34
 
35
  elif detector == '2nd order derivatives in x':
36
- grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=2) # BxCx2xHxW
37
  grads_x = grads[:, :, 0]
38
  grads_y = grads[:, :, 1]
39
 
40
  output = K.utils.tensor_to_image(1. - grads_x.clamp(0., 1.))
41
 
42
  elif detector == '2nd order derivatives in y':
43
- grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=2) # BxCx2xHxW
44
  grads_x = grads[:, :, 0]
45
  grads_y = grads[:, :, 1]
46
 
 
7
  import kornia as K
8
  from kornia.core import Tensor
9
 
10
+ def edge_detection(filepath, detector):
11
 
12
+ img_bgr: np.ndarray = cv2.imread(filepath, cv2.IMREAD_COLOR)
13
 
14
+ x_bgr: torch.Tensor = K.utils.image_to_tensor(img_bgr)
15
  x_bgr = x_bgr[None,...].float() / 255.
16
 
17
  x_rgb: torch.Tensor = K.color.bgr_to_rgb(x_bgr)
 
19
 
20
 
21
  if detector == '1st order derivates in x':
22
+ grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=1)
23
  grads_x = grads[:, :, 0]
24
  grads_y = grads[:, :, 1]
25
 
26
  output = K.utils.tensor_to_image(1. - grads_x.clamp(0., 1.))
27
 
28
  elif detector == '1st order derivates in y':
29
+ grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=1)
30
  grads_x = grads[:, :, 0]
31
  grads_y = grads[:, :, 1]
32
 
33
  output = K.utils.tensor_to_image(1. - grads_y.clamp(0., 1.))
34
 
35
  elif detector == '2nd order derivatives in x':
36
+ grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=2)
37
  grads_x = grads[:, :, 0]
38
  grads_y = grads[:, :, 1]
39
 
40
  output = K.utils.tensor_to_image(1. - grads_x.clamp(0., 1.))
41
 
42
  elif detector == '2nd order derivatives in y':
43
+ grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=2)
44
  grads_x = grads[:, :, 0]
45
  grads_y = grads[:, :, 1]
46