Spaces:
Sleeping
Sleeping
koshin2001
commited on
Commit
ยท
6364f02
1
Parent(s):
cc9b9f8
๐ Add app
Browse files- .gitignore +5 -0
- app.py +57 -0
- const.py +10 -0
- inference.py +35 -0
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
|
3 |
+
.DS_Store
|
4 |
+
|
5 |
+
__pycache__
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import inference
|
3 |
+
import pandas as pd
|
4 |
+
import const
|
5 |
+
|
6 |
+
st.title("Japanese to Emotion classification")
|
7 |
+
st.write(
|
8 |
+
"I fine-tuned the BERT-based distillation model for classification of Japanese text."
|
9 |
+
)
|
10 |
+
|
11 |
+
if "input_text" not in st.session_state:
|
12 |
+
st.session_state.input_text = ""
|
13 |
+
|
14 |
+
input_text = st.text_area(
|
15 |
+
"Japanese text", value=st.session_state.input_text, max_chars=512
|
16 |
+
)
|
17 |
+
|
18 |
+
suggestions = ["ไปๆฅใฏๆ็ฌใจๆฃๆญฉใใ", "็ซใซใใง่กใใใ", "่ช่ปข่ป็ใพใใ"]
|
19 |
+
|
20 |
+
COLUMNS_NUM = len(suggestions)
|
21 |
+
cols = st.columns(COLUMNS_NUM)
|
22 |
+
|
23 |
+
for i, suggestion in enumerate(suggestions):
|
24 |
+
with cols[i]:
|
25 |
+
if st.button(suggestion, use_container_width=True):
|
26 |
+
st.session_state.input_text = suggestion
|
27 |
+
st.rerun()
|
28 |
+
|
29 |
+
st.session_state.input_text = input_text
|
30 |
+
|
31 |
+
if input_text:
|
32 |
+
probs_dict = inference.exec(input_text)
|
33 |
+
|
34 |
+
label_dict = {
|
35 |
+
const.EMOTIONS[0]: "๐ Joy",
|
36 |
+
const.EMOTIONS[1]: "๐ข Sadness",
|
37 |
+
const.EMOTIONS[2]: "๐ฎ Anticipation",
|
38 |
+
const.EMOTIONS[3]: "๐ฒ Surprise",
|
39 |
+
const.EMOTIONS[4]: "๐ Anger",
|
40 |
+
const.EMOTIONS[5]: "๐จ Fear",
|
41 |
+
const.EMOTIONS[6]: "๐ Disgust",
|
42 |
+
const.EMOTIONS[7]: "๐ Trust",
|
43 |
+
}
|
44 |
+
|
45 |
+
df = pd.DataFrame(
|
46 |
+
{
|
47 |
+
"Emotion": label_dict.values(),
|
48 |
+
"Probs": [probs_dict[emotion] for emotion in const.EMOTIONS],
|
49 |
+
}
|
50 |
+
)
|
51 |
+
|
52 |
+
st.bar_chart(df.set_index("Emotion"), horizontal=True)
|
53 |
+
|
54 |
+
st.write('''
|
55 |
+
- [GitHub](https://github.com/koshin01)
|
56 |
+
- [Blog](https://zenn.dev/koshin)
|
57 |
+
''')
|
const.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EMOTIONS = [
|
2 |
+
"Joy",
|
3 |
+
"Sadness",
|
4 |
+
"Anticipation",
|
5 |
+
"Surprise",
|
6 |
+
"Anger",
|
7 |
+
"Fear",
|
8 |
+
"Disgust",
|
9 |
+
"Trust",
|
10 |
+
]
|
inference.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import const
|
5 |
+
|
6 |
+
|
7 |
+
def load_model():
|
8 |
+
return AutoModelForSequenceClassification.from_pretrained(
|
9 |
+
"koshin2001/Japanese-to-emotions"
|
10 |
+
).eval()
|
11 |
+
|
12 |
+
|
13 |
+
def load_tokenizer():
|
14 |
+
return AutoTokenizer.from_pretrained("koshin2001/Japanese-to-emotions")
|
15 |
+
|
16 |
+
|
17 |
+
def exec(text):
|
18 |
+
model = load_model()
|
19 |
+
tokenizer = load_tokenizer()
|
20 |
+
|
21 |
+
inputs = tokenizer(
|
22 |
+
text,
|
23 |
+
return_tensors="pt",
|
24 |
+
truncation=True,
|
25 |
+
return_token_type_ids=False,
|
26 |
+
max_length=512,
|
27 |
+
)
|
28 |
+
output = model(**inputs)
|
29 |
+
|
30 |
+
output_logits = torch.tensor(output.logits).clone().detach().requires_grad_(True)
|
31 |
+
probs = F.softmax(output_logits, dim=-1).tolist()[0]
|
32 |
+
|
33 |
+
emotion_probs = dict(zip(const.EMOTIONS, probs))
|
34 |
+
|
35 |
+
return emotion_probs
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
transformers == 4.44.2
|