File size: 16,329 Bytes
565faca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (c) Kotoba Technologies, Inc. and affiliates.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this
# list of conditions and the following disclaimer in the documentation and/or other
# materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import itertools
import gc
import time
from pathlib import Path
from typing import Optional, Tuple

import torch
import torch._dynamo.config
import torch._inductor.config
import tqdm


def device_sync(device):
    if "cuda" in device:
        torch.cuda.synchronize()
    elif "cpu" in device:
        pass
    else:
        print(f"device={device} is not yet suppported")


torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.fx_graph_cache = (
    True  # Experimental feature to reduce compilation times, will be on by default in future
)

# imports need to happen after setting above flags
from fam.llm.fast_model import Transformer
from fam.quantiser.audio.speaker_encoder.model import SpeakerEncoder
from fam.quantiser.text.tokenise import TrainedBPETokeniser


def multinomial_sample_one_no_sync(
    probs_sort,
):  # Does multinomial sampling without a cuda synchronization
    q = torch.empty_like(probs_sort).exponential_(1)
    return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)


def top_p_sample(logits: torch.Tensor, top_p: torch.Tensor):
    # ref: huggingface/transformers

    sorted_logits, sorted_indices = torch.sort(logits, descending=False)
    cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)

    # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
    sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
    # Keep at least min_tokens_to_keep
    sorted_indices_to_remove[-1:] = 0

    # scatter sorted tensors to original indexing
    indices_to_remove = sorted_indices_to_remove.scatter(0, sorted_indices, sorted_indices_to_remove)
    scores = logits.masked_fill(indices_to_remove, -float("Inf"))
    return scores


def logits_to_probs(
    logits,
    *,
    temperature: torch.Tensor,
    top_p: Optional[torch.Tensor] = None,
    top_k: Optional[torch.Tensor] = None,
):
    logits = logits / torch.max(temperature, 1e-5 * torch.ones_like(temperature))

    if top_k is not None:
        v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
        pivot = v.select(-1, -1).unsqueeze(-1)
        logits = torch.where(logits < pivot, -float("Inf"), logits)

    if top_p is not None:
        logits = top_p_sample(logits, top_p)

    probs = torch.nn.functional.softmax(logits, dim=-1)

    return probs


def sample(
    logits,
    guidance_scale: torch.Tensor,
    temperature: torch.Tensor,
    top_p: Optional[torch.Tensor] = None,
    top_k: Optional[torch.Tensor] = None,
):
    # (b, t, vocab_size)
    logits = logits[:, -1]
    logits_cond, logits_uncond_spkemb = logits.split(logits.size(0) // 2, dim=0)
    logits = guidance_scale * logits_cond + (1 - guidance_scale) * logits_uncond_spkemb
    probs = logits_to_probs(logits[0], temperature=temperature, top_p=top_p, top_k=top_k)
    idx_next = multinomial_sample_one_no_sync(probs)
    return idx_next, probs


def prefill(
    model: Transformer,
    x: torch.Tensor,
    spk_emb: torch.Tensor,
    input_pos: torch.Tensor,
    **sampling_kwargs,
) -> torch.Tensor:
    # input_pos: [B, S]
    logits = model(x, spk_emb, input_pos)
    return sample(logits, **sampling_kwargs)[0]


def decode_one_token(
    model: Transformer,
    x: torch.Tensor,
    spk_emb: torch.Tensor,
    input_pos: torch.Tensor,
    **sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # input_pos: [B, 1]
    assert input_pos.shape[-1] == 1
    logits = model(x, spk_emb, input_pos)
    return sample(logits, **sampling_kwargs)


def decode_n_tokens(
    model: Transformer,
    cur_token: torch.Tensor,
    spk_emb: torch.Tensor,
    input_pos: torch.Tensor,
    num_new_tokens: int,
    callback=lambda _: _,
    return_probs: bool = False,
    end_of_audio_token: int = 2048,
    **sampling_kwargs,
):
    new_tokens, new_probs = [], []
    for i in tqdm.tqdm(range(num_new_tokens)):
        if (cur_token == end_of_audio_token).any():
            break
        with torch.backends.cuda.sdp_kernel(
            enable_flash=False, enable_mem_efficient=False, enable_math=True
        ):  # Actually better for Inductor to codegen attention here
            next_token, next_prob = decode_one_token(model, cur_token, spk_emb, input_pos, **sampling_kwargs)
            input_pos += 1
            new_tokens.append(next_token.clone())
            callback(new_tokens[-1])
            if return_probs:
                new_probs.append(next_prob.clone())
            cur_token = next_token.view(1, -1).repeat(2, 1)

    return new_tokens, new_probs


def model_forward(model, x, spk_emb, input_pos):
    return model(x, spk_emb, input_pos)


@torch.no_grad()
def generate(
    model: Transformer,
    prompt: torch.Tensor,
    spk_emb: torch.Tensor,
    *,
    max_new_tokens: Optional[int] = None,
    callback=lambda x: x,
    end_of_audio_token: int = 2048,
    **sampling_kwargs,
) -> torch.Tensor:
    """
    Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
    """
    # create an empty tensor of the expected final shape and fill in the current tokens
    T = prompt.size(0)
    if max_new_tokens is None:
        max_seq_length = model.config.block_size
    else:
        max_seq_length = T + max_new_tokens
        max_seq_length = min(max_seq_length, model.config.block_size)
    max_new_tokens = max_seq_length - T
    if max_new_tokens <= 0:
        raise ValueError("Prompt is too long to generate more tokens")

    device, dtype = prompt.device, prompt.dtype

    seq = torch.clone(prompt)
    input_pos = torch.arange(0, T, device=device)

    next_token = prefill(model, prompt.view(1, -1).repeat(2, 1), spk_emb, input_pos, **sampling_kwargs)
    seq = torch.cat([seq, next_token.view(1)])

    input_pos = torch.tensor([T], device=device, dtype=torch.int)

    generated_tokens, _ = decode_n_tokens(
        model,
        next_token.view(1, -1).repeat(2, 1),
        spk_emb,
        input_pos,
        max_new_tokens - 1,
        callback=callback,
        end_of_audio_token=end_of_audio_token,
        **sampling_kwargs,
    )
    seq = torch.cat([seq, torch.cat(generated_tokens)])

    return seq


def encode_tokens(tokenizer, string, device="cuda"):
    tokens = tokenizer.encode(string)
    return torch.tensor(tokens, dtype=torch.int, device=device)


def _load_model(checkpoint_path, spk_emb_ckpt_path, device, precision, first_model_path=None, unwanted_prefix="_orig_mod."):
    ##### MODEL
    with torch.device("meta"):
        model = Transformer.from_name("kotoba-speech-v0.1")

    # TODO(quantization): enable
    # if "int8" in str(checkpoint_path):
    #     print("Using int8 weight-only quantization!")
    #     from quantize import WeightOnlyInt8QuantHandler
    #     simple_quantizer = WeightOnlyInt8QuantHandler(model)
    #     model = simple_quantizer.convert_for_runtime()
    # from quantize import WeightOnlyInt8QuantHandler

    # if "int4" in str(checkpoint_path):
    #     print("Using int4 quantization!")
    #     path_comps = checkpoint_path.name.split(".")
    #     assert path_comps[-2].startswith("g")
    #     groupsize = int(path_comps[-2][1:])
    #     from quantize import WeightOnlyInt4QuantHandler
    #     simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
    #     model = simple_quantizer.convert_for_runtime()
    
    checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=False)

    ###### TOKENIZER
    tokenizer_info = checkpoint.get("meta", {}).get("tokenizer", {})
    tokenizer = TrainedBPETokeniser(**tokenizer_info)

    if first_model_path is not None:
        trained_ckpt = torch.load(str(first_model_path), mmap=True, weights_only=False)
        state_dict = trained_ckpt["state_dict"]
        del checkpoint
        gc.collect()
        torch.cuda.empty_cache()
    else:
        checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=False)
        if "state_dict" in checkpoint.keys():
            state_dict = checkpoint["state_dict"]
        else:
            state_dict = checkpoint["model"]
    # convert Kotoba-Speech model weights naming to gptfast naming
    for k, v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
    state_dict["tok_embeddings.weight"] = state_dict.pop("transformer.wtes.0.weight")
    state_dict["pos_embeddings.weight"] = state_dict.pop("transformer.wpe.weight")
    state_dict["output.weight"] = state_dict.pop("lm_heads.0.weight")
    state_dict["norm.weight"] = state_dict.pop("transformer.ln_f.weight")
    for k, v in list(state_dict.items()):
        if k.startswith("transformer.h."):
            state_dict[k.replace("transformer.h.", "layers.")] = state_dict.pop(k)
            k = k.replace("transformer.h.", "layers.")
        if ".attn.c_attn." in k:
            state_dict[k.replace(".attn.c_attn.", ".attention.wqkv.")] = state_dict.pop(k)
            k = k.replace(".attn.c_attn.", ".attention.wqkv.")
        if ".attn.c_proj." in k:
            state_dict[k.replace(".attn.c_proj.", ".attention.wo.")] = state_dict.pop(k)
            k = k.replace(".attn.c_proj.", ".attention.wo.")
        if ".mlp.swiglu.w1." in k:
            state_dict[k.replace(".mlp.swiglu.w1.", ".feed_forward.swiglu.w1.")] = state_dict.pop(k)
            k = k.replace(".mlp.swiglu.w1.", ".feed_forward.swiglu.w1.")
        if ".mlp.swiglu.w3." in k:
            state_dict[k.replace(".mlp.swiglu.w3.", ".feed_forward.swiglu.w3.")] = state_dict.pop(k)
            k = k.replace(".mlp.swiglu.w3.", ".feed_forward.swiglu.w3.")
        if ".ln_1." in k:
            state_dict[k.replace(".ln_1.", ".attention_norm.")] = state_dict.pop(k)
            k = k.replace(".ln_1.", ".attention_norm.")
        if ".ln_2." in k:
            state_dict[k.replace(".ln_2.", ".ffn_norm.")] = state_dict.pop(k)
            k = k.replace(".ln_2.", ".ffn_norm.")
        if ".mlp.c_proj." in k:
            state_dict[k.replace(".mlp.c_proj.", ".feed_forward.w2.")] = state_dict.pop(k)
            k = k.replace(".mlp.c_proj.", ".feed_forward.w2.")

    model.load_state_dict(state_dict, assign=True)
    # simple_quantizer = WeightOnlyInt8QuantHandler(model)
    # quantized_state_dict = simple_quantizer.create_quantized_state_dict()
    # model = simple_quantizer.convert_for_runtime()
    # model.load_state_dict(quantized_state_dict, assign=True)
    model = model.to(device=device, dtype=precision)

    ###### SPEAKER EMBEDDER
    # TODO: fix!
    smodel = SpeakerEncoder(
        weights_fpath=spk_emb_ckpt_path,
        device=device,
        eval=True,
        verbose=False,
    )
    return model.eval(), tokenizer, smodel


def build_model(
    *,
    precision: torch.dtype,
    checkpoint_path: Path = Path(""),
    spk_emb_ckpt_path: Path = Path(""),
    compile_prefill: bool = False,
    compile: bool = True,
    device: str = "cuda",
    first_model_path: str = None,
):
    assert checkpoint_path.is_file(), checkpoint_path

    print(f"Using device={device}")

    print("Loading model ...")
    t0 = time.time()
    if first_model_path is None:
        # model, tokenizer, smodel = _load_model(checkpoint_path, spk_emb_ckpt_path, device, precision)
        model, tokenizer, smodel = _load_model(
            checkpoint_path, spk_emb_ckpt_path, device, precision, unwanted_prefix="first_stage_model_transformer."
        )

    else:
        model, tokenizer, smodel = _load_model(checkpoint_path, spk_emb_ckpt_path, device, precision, first_model_path, unwanted_prefix="first_stage_model_transformer.")


    device_sync(device=device)  # MKG
    print(f"Time to load model: {time.time() - t0:.02f} seconds")

    torch.manual_seed(1234)
    model_size = sum([p.numel() * p.dtype.itemsize for p in itertools.chain(model.parameters(), model.buffers())])

    with torch.device(device):
        model.setup_spk_cond_mask()
        model.setup_caches(max_batch_size=2, max_seq_length=model.config.block_size)

    if compile:
        print("Compiling...Can take up to 2 mins.")
        global decode_one_token, prefill
        decode_one_token = torch.compile(
            decode_one_token,
            mode="max-autotune",
            fullgraph=True,
        )

        if compile_prefill:
            prefill = torch.compile(
                prefill,
                fullgraph=True,
                dynamic=True,
            )

    encoded = encode_tokens(tokenizer, "Hello, what's up?", device=device)
    spk_emb = torch.randn((1, 256), device=device, dtype=precision)

    device_sync(device=device)  # MKG
    t0 = time.perf_counter()
    y = generate(
        model,
        encoded,
        spk_emb,
        max_new_tokens=200,
        callback=lambda x: x,
        temperature=torch.tensor(1.0, device=device, dtype=precision),
        top_k=None,
        top_p=torch.tensor(0.95, device=device, dtype=precision),
        guidance_scale=torch.tensor(3.0, device=device, dtype=precision),
        end_of_audio_token=9999,  # don't end early for compilation stage.
    )

    device_sync(device=device)  # MKG

    print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")

    return model, tokenizer, smodel, model_size


def main(
    *,
    model,
    tokenizer,
    model_size,
    prompt: str,
    guidance_scale: torch.Tensor,
    temperature: torch.Tensor,
    spk_emb: torch.Tensor,
    top_k: Optional[torch.Tensor] = None,
    top_p: Optional[torch.Tensor] = None,
    device: str = "cuda",
) -> list:
    """Generates text samples based on a pre-trained Transformer model and tokenizer."""

    encoded = encode_tokens(tokenizer, prompt, device=device)
    prompt_length = encoded.size(0)

    aggregate_metrics: dict = {
        "tokens_per_sec": [],
    }

    device_sync(device=device)  # MKG

    if True:
        callback = lambda x: x
    t0 = time.perf_counter()

    y = generate(
        model,
        encoded,
        spk_emb,
        callback=callback,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        guidance_scale=guidance_scale,
    )

    device_sync(device=device)  # MKG
    t = time.perf_counter() - t0

    tokens_generated = y.size(0) - prompt_length
    tokens_sec = tokens_generated / t
    aggregate_metrics["tokens_per_sec"].append(tokens_sec)
    print(f"Time for 1st stage LLM inference: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec")
    print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s")
    # print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}")
    print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB\n")

    return y.tolist()