Spaces:
Sleeping
Sleeping
File size: 4,539 Bytes
9ee44bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from datetime import datetime
import json
class WeatherPredictor:
def __init__(self, data_path):
# Load and preprocess data
self.df = pd.read_csv(data_path, parse_dates=['Date'],
date_parser=lambda x: datetime.strptime(x, '%d/%m/%y'))
self.df['day'] = self.df['Date'].dt.day
self.df['month'] = self.df['Date'].dt.month
self.df['year'] = self.df['Date'].dt.year
self.df['day_sin'] = np.sin(2 * np.pi * self.df['day'] / 31)
self.df['day_cos'] = np.cos(2 * np.pi * self.df['day'] / 31)
self.df['month_sin'] = np.sin(2 * np.pi * self.df['month'] / 12)
self.df['month_cos'] = np.cos(2 * np.pi * self.df['month'] / 12)
features = ['day_sin', 'day_cos', 'month_sin', 'month_cos', 'year']
target_columns = ['Temperature', 'Precipitation', 'Snowfall', 'Windspeed', 'Cloud Coverage', 'Sunshine Duration']
# Check for NaN or infinite values
if self.df[features + target_columns].isnull().values.any():
raise ValueError("Data contains NaN values. Please clean the data.")
if np.isinf(self.df[features + target_columns].values).any():
raise ValueError("Data contains infinite values. Please clean the data.")
# Scale features and targets
self.feature_scaler = MinMaxScaler()
self.target_scaler = MinMaxScaler()
X = self.feature_scaler.fit_transform(self.df[features])
Y = self.target_scaler.fit_transform(self.df[target_columns])
self.X_tensor = torch.FloatTensor(X)
self.Y_tensor = torch.FloatTensor(Y)
# Single model for all targets
input_dim = len(features)
self.model = nn.Sequential(
nn.Linear(input_dim, 16),
nn.ReLU(),
nn.Linear(16, 12),
nn.ReLU(),
nn.Linear(12, 6)
)
def train(self, epochs=10000):
# Define loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.Adam(self.model.parameters(), lr=0.001) # Reduced learning rate
for epoch in range(epochs):
# Forward pass
outputs = self.model(self.X_tensor) # Multi-output predictions
loss = criterion(outputs, self.Y_tensor)
# Check for NaN loss
if torch.isnan(loss):
raise ValueError("Loss is NaN. Please check your data and model.")
# Backward pass and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(f'Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}')
# Save the model after training
self.save_model('weather_predictor.pth')
def predict(self, input_date):
# Convert input date to features
date = datetime.strptime(input_date, '%d/%m/%y')
features = [
np.sin(2 * np.pi * date.day / 31),
np.cos(2 * np.pi * date.day / 31),
np.sin(2 * np.pi * date.month / 12),
np.cos(2 * np.pi * date.month / 12),
date.year
]
# Transform features to match training scale
scaled_features = self.feature_scaler.transform([features])
input_tensor = torch.FloatTensor(scaled_features)
# Load the model before making predictions
self.load_model('weather_predictor.pth')
# Predict outputs
with torch.no_grad():
scaled_predictions = self.model(input_tensor).numpy()
predictions = self.target_scaler.inverse_transform(scaled_predictions.reshape(1, -1)).flatten()
# Map predictions to target columns
target_columns = ['Temperature C', 'Precipitation mm', 'Snowfall cm', 'Windspeed km/h' , 'Cloud Coverage %', 'Sunshine Duration min']
result_dict = dict(zip(target_columns, predictions))
return result_dict
def save_model(self, file_path):
torch.save(self.model.state_dict(), file_path)
def load_model(self, file_path):
self.model.load_state_dict(torch.load(file_path))
self.model.eval()
def main():
predictor = WeatherPredictor('Basel2019-2024.csv')
predictor.train()
# Predict for a specific date
result = predictor.predict('01/02/23')
print("Predictions:", result)
if __name__ == '__main__':
main() |