Spaces:
Sleeping
Sleeping
File size: 19,426 Bytes
39c8554 50d7cab 39c8554 545388a 39c8554 53bf1d0 39c8554 39057ad 39c8554 39057ad 39c8554 39057ad 39c8554 545388a 39c8554 545388a 39c8554 545388a 39c8554 307fdad 39c8554 39057ad 39c8554 39057ad 39c8554 39057ad 39c8554 39057ad 39c8554 545388a 39c8554 545388a 39c8554 545388a 39c8554 545388a 39c8554 545388a 39c8554 307fdad 39c8554 39057ad 39c8554 39057ad 39c8554 39057ad 39c8554 39057ad 39c8554 545388a 39c8554 545388a 39c8554 545388a 39c8554 545388a 39c8554 307fdad 39c8554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import diffusers
import torch
import random
from tqdm import tqdm
from constants import SUBJECTS, MEDIUMS
from PIL import Image
class CLIPSlider:
def __init__(
self,
sd_pipe,
device: torch.device,
target_word: str = "",
opposite: str = "",
target_word_2nd: str = "",
opposite_2nd: str = "",
iterations: int = 300,
):
self.device = device
self.pipe = sd_pipe.to(self.device)
self.iterations = iterations
if target_word != "" or opposite != "":
self.avg_diff = self.find_latent_direction(target_word, opposite)
else:
self.avg_diff = None
if target_word_2nd != "" or opposite_2nd != "":
self.avg_diff_2nd = self.find_latent_direction(target_word_2nd, opposite_2nd)
else:
self.avg_diff_2nd = None
def find_latent_direction(self,
target_word:str,
opposite:str):
# lets identify a latent direction by taking differences between opposites
# target_word = "happy"
# opposite = "sad"
with torch.no_grad():
positives = []
negatives = []
for i in tqdm(range(self.iterations)):
medium = random.choice(MEDIUMS)
subject = random.choice(SUBJECTS)
pos_prompt = f"a {medium} of a {target_word} {subject}"
neg_prompt = f"a {medium} of a {opposite} {subject}"
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
pos = self.pipe.text_encoder(pos_toks).pooler_output
neg = self.pipe.text_encoder(neg_toks).pooler_output
positives.append(pos)
negatives.append(neg)
positives = torch.cat(positives, dim=0)
negatives = torch.cat(negatives, dim=0)
diffs = positives - negatives
avg_diff = diffs.mean(0, keepdim=True)
return avg_diff
def generate(self,
prompt = "a photo of a house",
scale = 2.,
scale_2nd = 0., # scale for the 2nd dim directions when avg_diff_2nd is not None
seed = 15,
only_pooler = False,
normalize_scales = False, # whether to normalize the scales when avg_diff_2nd is not None
correlation_weight_factor = 1.0,
**pipeline_kwargs
):
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
# if pooler token only [-4,4] work well
with torch.no_grad():
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
if self.avg_diff_2nd and normalize_scales:
denominator = abs(scale) + abs(scale_2nd)
scale = scale / denominator
scale_2nd = scale_2nd / denominator
if only_pooler:
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff * scale
if self.avg_diff_2nd:
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd * scale_2nd
else:
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
standard_weights = torch.ones_like(weights)
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
# weights = torch.sigmoid((weights-0.5)*7)
prompt_embeds = prompt_embeds + (
weights * self.avg_diff[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
if self.avg_diff_2nd:
prompt_embeds += weights * self.avg_diff_2nd[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd
torch.manual_seed(seed)
image = self.pipe(prompt_embeds=prompt_embeds, **pipeline_kwargs).images[0]
return image
def spectrum(self,
prompt="a photo of a house",
low_scale=-2,
low_scale_2nd=-2,
high_scale=2,
high_scale_2nd=2,
steps=5,
seed=15,
only_pooler=False,
normalize_scales=False,
correlation_weight_factor=1.0,
**pipeline_kwargs
):
images = []
for i in range(steps):
scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
scale_2nd = low_scale_2nd + (high_scale_2nd - low_scale_2nd) * i / (steps - 1)
image = self.generate(prompt, scale, scale_2nd, seed, only_pooler, normalize_scales, correlation_weight_factor, **pipeline_kwargs)
images.append(image[0])
canvas = Image.new('RGB', (640 * steps, 640))
for i, im in enumerate(images):
canvas.paste(im, (640 * i, 0))
return canvas
class CLIPSliderXL(CLIPSlider):
def find_latent_direction(self,
target_word:str,
opposite:str):
# lets identify a latent direction by taking differences between opposites
# target_word = "happy"
# opposite = "sad"
with torch.no_grad():
positives = []
negatives = []
positives2 = []
negatives2 = []
for i in tqdm(range(self.iterations)):
medium = random.choice(MEDIUMS)
subject = random.choice(SUBJECTS)
pos_prompt = f"a {medium} of a {target_word} {subject}"
neg_prompt = f"a {medium} of a {opposite} {subject}"
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
pos = self.pipe.text_encoder(pos_toks).pooler_output
neg = self.pipe.text_encoder(neg_toks).pooler_output
positives.append(pos)
negatives.append(neg)
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
positives2.append(pos2)
negatives2.append(neg2)
positives = torch.cat(positives, dim=0)
negatives = torch.cat(negatives, dim=0)
diffs = positives - negatives
avg_diff = diffs.mean(0, keepdim=True)
positives2 = torch.cat(positives2, dim=0)
negatives2 = torch.cat(negatives2, dim=0)
diffs2 = positives2 - negatives2
avg_diff2 = diffs2.mean(0, keepdim=True)
return (avg_diff, avg_diff2)
def generate(self,
prompt = "a photo of a house",
scale = 2,
scale_2nd = 2,
seed = 15,
only_pooler = False,
normalize_scales = False,
correlation_weight_factor = 1.0,
**pipeline_kwargs
):
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
# if pooler token only [-4,4] work well
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
with torch.no_grad():
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.cuda()
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
prompt_embeds_list = []
for i, text_encoder in enumerate(text_encoders):
tokenizer = tokenizers[i]
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
toks = text_inputs.input_ids
prompt_embeds = text_encoder(
toks.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
if self.avg_diff_2nd and normalize_scales:
denominator = abs(scale) + abs(scale_2nd)
scale = scale / denominator
scale_2nd = scale_2nd / denominator
if only_pooler:
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff[0] * scale
if self.avg_diff_2nd:
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd[0] * scale_2nd
else:
print(self.avg_diff)
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
if i == 0:
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
standard_weights = torch.ones_like(weights)
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
prompt_embeds = prompt_embeds + (weights * self.avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
if self.avg_diff_2nd:
prompt_embeds += (weights * self.avg_diff_2nd[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd)
else:
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
standard_weights = torch.ones_like(weights)
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
prompt_embeds = prompt_embeds + (weights * self.avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
if self.avg_diff_2nd:
prompt_embeds += (weights * self.avg_diff_2nd[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale_2nd)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
torch.manual_seed(seed)
image = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds,
**pipeline_kwargs).images[0]
return image
class CLIPSlider3(CLIPSlider):
def find_latent_direction(self,
target_word:str,
opposite:str):
# lets identify a latent direction by taking differences between opposites
# target_word = "happy"
# opposite = "sad"
with torch.no_grad():
positives = []
negatives = []
positives2 = []
negatives2 = []
for i in tqdm(range(self.iterations)):
medium = random.choice(MEDIUMS)
subject = random.choice(SUBJECTS)
pos_prompt = f"a {medium} of a {target_word} {subject}"
neg_prompt = f"a {medium} of a {opposite} {subject}"
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
pos = self.pipe.text_encoder(pos_toks).text_embeds
neg = self.pipe.text_encoder(neg_toks).text_embeds
positives.append(pos)
negatives.append(neg)
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
positives2.append(pos2)
negatives2.append(neg2)
positives = torch.cat(positives, dim=0)
negatives = torch.cat(negatives, dim=0)
diffs = positives - negatives
avg_diff = diffs.mean(0, keepdim=True)
positives2 = torch.cat(positives2, dim=0)
negatives2 = torch.cat(negatives2, dim=0)
diffs2 = positives2 - negatives2
avg_diff2 = diffs2.mean(0, keepdim=True)
return (avg_diff, avg_diff2)
def generate(self,
prompt = "a photo of a house",
scale = 2,
seed = 15,
only_pooler = False,
correlation_weight_factor = 1.0,
** pipeline_kwargs
):
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
# if pooler token only [-4,4] work well
clip_text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
clip_tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
with torch.no_grad():
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.cuda()
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
clip_prompt_embeds_list = []
clip_pooled_prompt_embeds_list = []
for i, text_encoder in enumerate(clip_text_encoders):
if i < 2:
tokenizer = clip_tokenizers[i]
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
toks = text_inputs.input_ids
prompt_embeds = text_encoder(
toks.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds)
prompt_embeds = prompt_embeds.hidden_states[-2]
else:
text_inputs = self.pipe.tokenizer_3(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
toks = text_inputs.input_ids
prompt_embeds = self.pipe.text_encoder_3(toks.to(self.device))[0]
t5_prompt_embed_shape = prompt_embeds.shape[-1]
if only_pooler:
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff[0] * scale
else:
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
if i == 0:
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
standard_weights = torch.ones_like(weights)
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
prompt_embeds = prompt_embeds + (weights * self.avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
else:
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
standard_weights = torch.ones_like(weights)
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
prompt_embeds = prompt_embeds + (weights * self.avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
if i < 2:
clip_prompt_embeds_list.append(prompt_embeds)
clip_prompt_embeds = torch.concat(clip_prompt_embeds_list, dim=-1)
clip_pooled_prompt_embeds = torch.concat(clip_pooled_prompt_embeds_list, dim=-1)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_prompt_embed_shape - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, prompt_embeds], dim=-2)
torch.manual_seed(seed)
image = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=clip_pooled_prompt_embeds,
**pipeline_kwargs).images[0]
return image |