File size: 19,394 Bytes
39c8554
 
 
 
 
 
 
 
 
 
 
 
50d7cab
 
39c8554
 
 
 
 
 
6e509af
39c8554
53bf1d0
 
 
 
39c8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ce957
 
39c8554
 
 
 
 
 
 
 
 
 
59ce957
39c8554
 
 
 
59ce957
 
 
39c8554
 
 
 
 
 
 
 
 
 
 
59ce957
 
 
39c8554
 
 
307fdad
39c8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ce957
 
39c8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ce957
39c8554
 
 
 
59ce957
 
 
39c8554
 
 
 
 
 
 
 
 
 
59ce957
 
 
39c8554
 
 
 
 
 
59ce957
 
 
39c8554
 
 
 
 
 
 
 
 
 
307fdad
39c8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ce957
39c8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ce957
39c8554
 
 
 
 
 
 
 
 
59ce957
39c8554
 
 
 
 
 
59ce957
39c8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307fdad
39c8554
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import diffusers
import torch
import random
from tqdm import tqdm
from constants import SUBJECTS, MEDIUMS
from PIL import Image

class CLIPSlider:
    def __init__(
            self,
            sd_pipe,
            device: torch.device,
            target_word: str = "",
            opposite: str = "",
            target_word_2nd: str = "",
            opposite_2nd: str = "",
            iterations: int = 300,
    ):

        self.device = device
        #self.pipe = sd_pipe.to(self.device)
        self.iterations = iterations
        if target_word != "" or opposite != "":
            self.avg_diff = self.find_latent_direction(target_word, opposite)
        else:
            self.avg_diff = None
        if target_word_2nd != "" or opposite_2nd != "":
            self.avg_diff_2nd = self.find_latent_direction(target_word_2nd, opposite_2nd)
        else:
            self.avg_diff_2nd = None


    def find_latent_direction(self,
                              target_word:str,
                              opposite:str):

        # lets identify a latent direction by taking differences between opposites
        # target_word = "happy"
        # opposite = "sad"


        with torch.no_grad():
            positives = []
            negatives = []
            for i in tqdm(range(self.iterations)):
                medium = random.choice(MEDIUMS)
                subject = random.choice(SUBJECTS)
                pos_prompt = f"a {medium} of a {target_word} {subject}"
                neg_prompt = f"a {medium} of a {opposite} {subject}"
                pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                          max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
                neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                          max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
                pos = self.pipe.text_encoder(pos_toks).pooler_output
                neg = self.pipe.text_encoder(neg_toks).pooler_output
                positives.append(pos)
                negatives.append(neg)

        positives = torch.cat(positives, dim=0)
        negatives = torch.cat(negatives, dim=0)

        diffs = positives - negatives

        avg_diff = diffs.mean(0, keepdim=True)
        return avg_diff


    def generate(self,
        prompt = "a photo of a house",
        scale = 2.,
        scale_2nd = 0., # scale for the 2nd dim directions when avg_diff_2nd is not None
        seed = 15,
        only_pooler = False,
        normalize_scales = False, # whether to normalize the scales when avg_diff_2nd is not None
        correlation_weight_factor = 1.0,
        avg_diff = None,
        avg_diff_2nd = None,
        **pipeline_kwargs
        ):
        # if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
        # if pooler token only [-4,4] work well

        with torch.no_grad():
            toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
                                  max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
        prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state

        if avg_diff_2nd and normalize_scales:
            denominator = abs(scale) + abs(scale_2nd)
            scale = scale / denominator
            scale_2nd = scale_2nd / denominator
        if only_pooler:
            prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + avg_diff * scale
            if avg_diff_2nd:
                prompt_embeds[:, toks.argmax()] += avg_diff_2nd * scale_2nd
        else:
            normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
        sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)

        standard_weights = torch.ones_like(weights)

        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor

        # weights = torch.sigmoid((weights-0.5)*7)
        prompt_embeds = prompt_embeds + (
                    weights * avg_diff[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
        if avg_diff_2nd:
            prompt_embeds += weights * avg_diff_2nd[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd


        torch.manual_seed(seed)
        image = self.pipe(prompt_embeds=prompt_embeds, **pipeline_kwargs).images[0]

        return image

    def spectrum(self,
                 prompt="a photo of a house",
                 low_scale=-2,
                 low_scale_2nd=-2,
                 high_scale=2,
                 high_scale_2nd=2,
                 steps=5,
                 seed=15,
                 only_pooler=False,
                 normalize_scales=False,
                 correlation_weight_factor=1.0,
                 **pipeline_kwargs
                 ):

        images = []
        for i in range(steps):
            scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
            scale_2nd = low_scale_2nd + (high_scale_2nd - low_scale_2nd) * i / (steps - 1)
            image = self.generate(prompt, scale, scale_2nd, seed, only_pooler, normalize_scales, correlation_weight_factor, **pipeline_kwargs)
            images.append(image[0])

        canvas = Image.new('RGB', (640 * steps, 640))
        for i, im in enumerate(images):
            canvas.paste(im, (640 * i, 0))

        return canvas

class CLIPSliderXL(CLIPSlider):

    def find_latent_direction(self,
                              target_word:str,
                              opposite:str):

        # lets identify a latent direction by taking differences between opposites
        # target_word = "happy"
        # opposite = "sad"


        with torch.no_grad():
            positives = []
            negatives = []
            positives2 = []
            negatives2 = []
            for i in tqdm(range(self.iterations)):
                medium = random.choice(MEDIUMS)
                subject = random.choice(SUBJECTS)
                pos_prompt = f"a {medium} of a {target_word} {subject}"
                neg_prompt = f"a {medium} of a {opposite} {subject}"

                pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                          max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
                neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                          max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
                pos = self.pipe.text_encoder(pos_toks).pooler_output
                neg = self.pipe.text_encoder(neg_toks).pooler_output
                positives.append(pos)
                negatives.append(neg)

                pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                             max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
                neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                             max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
                pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
                neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
                positives2.append(pos2)
                negatives2.append(neg2)

        positives = torch.cat(positives, dim=0)
        negatives = torch.cat(negatives, dim=0)
        diffs = positives - negatives
        avg_diff = diffs.mean(0, keepdim=True)

        positives2 = torch.cat(positives2, dim=0)
        negatives2 = torch.cat(negatives2, dim=0)
        diffs2 = positives2 - negatives2
        avg_diff2 = diffs2.mean(0, keepdim=True)
        return (avg_diff, avg_diff2)

    def generate(self,
        prompt = "a photo of a house",
        scale = 2,
        scale_2nd = 2,
        seed = 15,
        only_pooler = False,
        normalize_scales = False,
        correlation_weight_factor = 1.0,
        avg_diff = None,
        avg_diff_2nd= None,
        **pipeline_kwargs
        ):
        # if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
        # if pooler token only [-4,4] work well

        text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
        tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
        with torch.no_grad():
            # toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.cuda()
            # prompt_embeds = pipe.text_encoder(toks).last_hidden_state

            prompt_embeds_list = []

            for i, text_encoder in enumerate(text_encoders):

                tokenizer = tokenizers[i]
                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                toks = text_inputs.input_ids

                prompt_embeds = text_encoder(
                    toks.to(text_encoder.device),
                    output_hidden_states=True,
                )

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                prompt_embeds = prompt_embeds.hidden_states[-2]

                if avg_diff_2nd and normalize_scales:
                    denominator = abs(scale) + abs(scale_2nd)
                    scale = scale / denominator
                    scale_2nd = scale_2nd / denominator
                if only_pooler:
                    prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + avg_diff[0] * scale
                    if avg_diff_2nd:
                        prompt_embeds[:, toks.argmax()] += avg_diff_2nd[0] * scale_2nd
                else:
                    normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
                    sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T

                    if i == 0:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        prompt_embeds = prompt_embeds + (weights * avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
                        if avg_diff_2nd:
                            prompt_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd)
                    else:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        prompt_embeds = prompt_embeds + (weights * avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
                        if avg_diff_2nd:
                            prompt_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale_2nd)

                bs_embed, seq_len, _ = prompt_embeds.shape
                prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
            pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)

            torch.manual_seed(seed)
            image = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds,
                         **pipeline_kwargs).images[0]

        return image


class CLIPSlider3(CLIPSlider):
    def find_latent_direction(self,
                              target_word:str,
                              opposite:str):

        # lets identify a latent direction by taking differences between opposites
        # target_word = "happy"
        # opposite = "sad"


        with torch.no_grad():
            positives = []
            negatives = []
            positives2 = []
            negatives2 = []
            for i in tqdm(range(self.iterations)):
                medium = random.choice(MEDIUMS)
                subject = random.choice(SUBJECTS)
                pos_prompt = f"a {medium} of a {target_word} {subject}"
                neg_prompt = f"a {medium} of a {opposite} {subject}"

                pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                          max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
                neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                          max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
                pos = self.pipe.text_encoder(pos_toks).text_embeds
                neg = self.pipe.text_encoder(neg_toks).text_embeds
                positives.append(pos)
                negatives.append(neg)

                pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                             max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
                neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
                                             max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
                pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
                neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
                positives2.append(pos2)
                negatives2.append(neg2)

        positives = torch.cat(positives, dim=0)
        negatives = torch.cat(negatives, dim=0)
        diffs = positives - negatives
        avg_diff = diffs.mean(0, keepdim=True)

        positives2 = torch.cat(positives2, dim=0)
        negatives2 = torch.cat(negatives2, dim=0)
        diffs2 = positives2 - negatives2
        avg_diff2 = diffs2.mean(0, keepdim=True) 
        return (avg_diff, avg_diff2)

    def generate(self,
        prompt = "a photo of a house",
        scale = 2,
        seed = 15,
        only_pooler = False,
        correlation_weight_factor = 1.0,
        ** pipeline_kwargs
        ):
        # if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
        # if pooler token only [-4,4] work well
        clip_text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
        clip_tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
        with torch.no_grad():
            # toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.cuda()
            # prompt_embeds = pipe.text_encoder(toks).last_hidden_state

            clip_prompt_embeds_list = []
            clip_pooled_prompt_embeds_list = []
            for i, text_encoder in enumerate(clip_text_encoders):

                if i < 2:
                    tokenizer = clip_tokenizers[i]
                    text_inputs = tokenizer(
                        prompt,
                        padding="max_length",
                        max_length=tokenizer.model_max_length,
                        truncation=True,
                        return_tensors="pt",
                    )
                    toks = text_inputs.input_ids

                    prompt_embeds = text_encoder(
                        toks.to(text_encoder.device),
                        output_hidden_states=True,
                    )

                    # We are only ALWAYS interested in the pooled output of the final text encoder
                    pooled_prompt_embeds = prompt_embeds[0]
                    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
                    clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds)
                    prompt_embeds = prompt_embeds.hidden_states[-2]
                else:
                    text_inputs = self.pipe.tokenizer_3(
                        prompt,
                        padding="max_length",
                        max_length=self.tokenizer_max_length,
                        truncation=True,
                        add_special_tokens=True,
                        return_tensors="pt",
                    )
                    toks = text_inputs.input_ids
                    prompt_embeds = self.pipe.text_encoder_3(toks.to(self.device))[0]
                    t5_prompt_embed_shape = prompt_embeds.shape[-1]

                if only_pooler:
                    prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + avg_diff[0] * scale
                else:
                    normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
                    sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
                    if i == 0:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        prompt_embeds = prompt_embeds + (weights * avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
                    else:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        prompt_embeds = prompt_embeds + (weights * avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)

                bs_embed, seq_len, _ = prompt_embeds.shape
                prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
                if i < 2:
                    clip_prompt_embeds_list.append(prompt_embeds)

            clip_prompt_embeds = torch.concat(clip_prompt_embeds_list, dim=-1)
            clip_pooled_prompt_embeds = torch.concat(clip_pooled_prompt_embeds_list, dim=-1)

            clip_prompt_embeds = torch.nn.functional.pad(
                clip_prompt_embeds, (0, t5_prompt_embed_shape - clip_prompt_embeds.shape[-1])
            )

            prompt_embeds = torch.cat([clip_prompt_embeds, prompt_embeds], dim=-2)



            torch.manual_seed(seed)
            image = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=clip_pooled_prompt_embeds,
                         **pipeline_kwargs).images[0]

        return image