Spaces:
Sleeping
Sleeping
File size: 8,316 Bytes
cd2465c 3051f7b f217e4d 9ed65fe 2d30f4b 9cf8208 f217e4d bf71114 164edec e4e5057 5a5c0c3 e4e5057 cd2465c 3051f7b c5b63fb b1c5569 2d30f4b f217e4d 9a397ea f217e4d 6c3f8be 74526f5 f217e4d e4f255d a87598e f217e4d 6c3f8be 74526f5 f217e4d 2d30f4b b486cec 2d30f4b cd2465c 0c5d517 f217e4d b1c5569 f217e4d 64b9ad0 b486cec 7c81d9d b486cec 4b0fbd1 cd2465c 64b9ad0 b486cec 7c81d9d b486cec 4b0fbd1 b486cec cd2465c bbab3de cd2465c f217e4d d5a8945 b1c5569 f217e4d e4e5057 164edec e4f255d e4e5057 164edec e4e5057 164edec e4f255d 164edec e4f255d 50d6862 164edec cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import spaces
import torch
from clip_slider_pipeline import CLIPSliderXL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoencoderKL
import time
import numpy as np
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda"))
pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config)
#pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
# scale = 0.8
# pipe_adapter.set_ip_adapter_scale(scale)
clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter,
device=torch.device("cuda"))
@spaces.GPU
def generate(slider_x, slider_y, prompt, seed, iterations, steps,
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
avg_diff_x_1, avg_diff_x_2,
avg_diff_y_1, avg_diff_y_2):
start_time = time.time()
# check if avg diff for directions need to be re-calculated
print("slider_x", slider_x)
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
avg_diff[0] = avg_diff[0].to(torch.float16)
avg_diff[1] = avg_diff[1].to(torch.float16)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
print("avg_diff[0].dtype", avg_diff[0].dtype)
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
avg_diff_2nd[0] = avg_diff_2nd[0].to(torch.float16)
avg_diff_2nd[1] = avg_diff_2nd[1].to(torch.float16)
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
end_time = time.time()
print(f"direction time: {end_time - start_time:.2f} ms")
start_time = time.time()
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
end_time = time.time()
print(f"generation time: {end_time - start_time:.2f} ms")
comma_concepts_x = ', '.join(slider_x)
comma_concepts_y = ', '.join(slider_y)
avg_diff_x_1 = avg_diff[0].cpu()
avg_diff_x_2 = avg_diff[1].cpu()
avg_diff_y_1 = avg_diff_2nd[0].cpu()
avg_diff_y_2 = avg_diff_2nd[1].cpu()
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
@spaces.GPU
def update_x(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
@spaces.GPU
def update_y(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
css = '''
#group {
position: relative;
width: 420px;
height: 420px;
margin-bottom: 20px;
background-color: white
}
#x {
position: absolute;
bottom: 0;
left: 25px;
width: 400px;
}
#y {
position: absolute;
bottom: 20px;
left: 67px;
width: 400px;
transform: rotate(-90deg);
transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
y_concept_1 = gr.State("")
y_concept_2 = gr.State("")
avg_diff_x_1 = gr.State()
avg_diff_x_2 = gr.State()
avg_diff_y_1 = gr.State()
avg_diff_y_2 = gr.State()
with gr.Tab(""):
with gr.Row():
with gr.Column():
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
prompt = gr.Textbox(label="Prompt")
submit = gr.Button("Submit")
with gr.Group(elem_id="group"):
x = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
output_image = gr.Image(elem_id="image_out")
with gr.Accordion(label="advanced options", open=False):
iterations = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
with gr.Tab(label="image2image"):
with gr.Row():
with gr.Column():
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
prompt_a = gr.Textbox(label="Prompt")
submit_a = gr.Button("Submit")
with gr.Group(elem_id="group"):
x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
output_image_a = gr.Image(elem_id="image_out")
with gr.Accordion(label="advanced options", open=False):
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
submit.click(fn=generate,
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
x.change(fn=update_x, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
y.change(fn=update_y, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
submit_a.click(fn=generate,
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
x_a.change(fn=update_x, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
y_a.change(fn=update_y, inputs=[x_a,y_a, prompt, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
if __name__ == "__main__":
demo.launch() |