Spaces:
Sleeping
Sleeping
File size: 3,419 Bytes
cd2465c 3051f7b f217e4d 666c6de b5bcbfa cd2465c 3051f7b f217e4d 7f1272f 0b57e4e 7f1272f f217e4d 0b57e4e f217e4d cd2465c d311402 f217e4d d311402 f217e4d cd2465c f217e4d d311402 f217e4d cd2465c bbab3de cd2465c f217e4d 50d6862 cd2465c f217e4d 50d6862 cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
import spaces
import torch
from clip_slider_pipeline import CLIPSliderXL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=150)
@spaces.GPU
def generate(slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2):
# check if avg diff for directions need to be re-calculated
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
print(slider_x)
clip_slider.avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1])
print(clip_slider.avg_diff)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
clip_slider.avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1])
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
comma_concepts_x = ', '.join(slider_x)
comma_concepts_y = ', '.join(slider_y)
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=8)
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, image
def update_x(x,y,prompt):
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
return image
def update_y(x,y,prompt):
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
return image
css = '''
#group {
position: relative;
width: 420px;
height: 420px;
margin-bottom: 20px;
background-color: white
}
#x {
position: absolute;
bottom: 0;
left: 25px;
width: 400px;
}
#y {
position: absolute;
bottom: 20px;
left: 67px;
width: 400px;
transform: rotate(-90deg);
transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
y_concept_1 = gr.State("")
y_concept_2 = gr.State("")
with gr.Row():
with gr.Column():
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
prompt = gr.Textbox(label="Prompt")
submit = gr.Button("Submit")
with gr.Group(elem_id="group"):
x = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
output_image = gr.Image(elem_id="image_out")
submit.click(fn=generate,
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2],
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, output_image])
x.change(fn=update_x, inputs=[x,y, prompt], outputs=[output_image])
y.change(fn=update_y, inputs=[x,y, prompt], outputs=[output_image])
if __name__ == "__main__":
demo.launch() |