File size: 3,419 Bytes
cd2465c
3051f7b
f217e4d
 
 
 
 
 
666c6de
b5bcbfa
cd2465c
3051f7b
f217e4d
 
 
 
7f1272f
0b57e4e
7f1272f
f217e4d
 
0b57e4e
f217e4d
 
cd2465c
 
 
d311402
f217e4d
 
 
 
d311402
f217e4d
cd2465c
f217e4d
d311402
f217e4d
cd2465c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbab3de
cd2465c
 
 
 
 
 
 
f217e4d
 
 
 
 
 
50d6862
 
 
 
 
 
 
 
 
 
 
cd2465c
f217e4d
 
 
 
50d6862
cd2465c
50d6862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
import spaces
import torch
from clip_slider_pipeline import CLIPSliderXL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler


flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=150)

@spaces.GPU
def generate(slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2):

    # check if avg diff for directions need to be re-calculated
    if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
        print(slider_x)
        clip_slider.avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1])
        print(clip_slider.avg_diff)
        x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
    if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
        clip_slider.avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1])
        y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
    
    comma_concepts_x = ', '.join(slider_x)
    comma_concepts_y = ', '.join(slider_y)

    image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=8)
  
    return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, image

def update_x(x,y,prompt):
  image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8) 
  return image

def update_y(x,y,prompt):
  image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8) 
  return image
  
css = '''
#group {
    position: relative;
    width: 420px;
    height: 420px;
    margin-bottom: 20px;
    background-color: white
}
#x {
    position: absolute;
    bottom: 0;
    left: 25px;
    width: 400px;
}
#y {
    position: absolute;
    bottom: 20px;
    left: 67px;
    width: 400px;
    transform: rotate(-90deg);
    transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
    
    x_concept_1 = gr.State("")
    x_concept_2 = gr.State("")
    y_concept_1 = gr.State("")
    y_concept_2 = gr.State("")
    
    with gr.Row():
        with gr.Column():
            slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
            slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
            prompt = gr.Textbox(label="Prompt")
            submit = gr.Button("Submit")
        with gr.Group(elem_id="group"):
          x = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
          y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
          output_image = gr.Image(elem_id="image_out")
    
    submit.click(fn=generate,
                 inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2],
                 outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, output_image])
    x.change(fn=update_x, inputs=[x,y, prompt], outputs=[output_image])
    y.change(fn=update_y, inputs=[x,y, prompt], outputs=[output_image])

if __name__ == "__main__":
    demo.launch()