Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
from diffusers.utils import BaseOutput | |
class LEditsPPDiffusionPipelineOutput(BaseOutput): | |
""" | |
Output class for LEdits++ Diffusion pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, | |
num_channels)`. | |
nsfw_content_detected (`List[bool]`) | |
List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or | |
`None` if safety checking could not be performed. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
nsfw_content_detected: Optional[List[bool]] | |
class LEditsPPInversionPipelineOutput(BaseOutput): | |
""" | |
Output class for LEdits++ Diffusion pipelines. | |
Args: | |
input_images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape ` | |
(batch_size, height, width, num_channels)`. | |
vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape | |
` (batch_size, height, width, num_channels)`. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray] |