Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import torch | |
from clip_slider_pipeline import CLIPSliderXL | |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler | |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16) | |
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config) | |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=50) | |
def generate(slider_x, slider_y, prompt, | |
x_concept_1, x_concept_2, y_concept_1, y_concept_2, | |
avg_diff_x_1, avg_diff_x_2, | |
avg_diff_y_1, avg_diff_y_2): | |
# check if avg diff for directions need to be re-calculated | |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]): | |
clip_slider.avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1]) | |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]): | |
clip_slider.avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1]) | |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1] | |
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=8) | |
comma_concepts_x = ', '.join(slider_x) | |
comma_concepts_y = ', '.join(slider_y) | |
avg_diff_x_1 = clip_slider.avg_diff[0].cpu() | |
avg_diff_x_2 = clip_slider.avg_diff[1].cpu() | |
avg_diff_y_1 = clip_slider.avg_diff_2nd[0].cpu() | |
avg_diff_y_2 = clip_slider.avg_diff_2nd[1].cpu() | |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image | |
def update_x(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2): | |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8) | |
return image | |
def update_y(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2): | |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8) | |
return image | |
css = ''' | |
#group { | |
position: relative; | |
width: 420px; | |
height: 420px; | |
margin-bottom: 20px; | |
background-color: white | |
} | |
#x { | |
position: absolute; | |
bottom: 0; | |
left: 25px; | |
width: 400px; | |
} | |
#y { | |
position: absolute; | |
bottom: 20px; | |
left: 67px; | |
width: 400px; | |
transform: rotate(-90deg); | |
transform-origin: left bottom; | |
} | |
#image_out{position:absolute; width: 80%; right: 10px; top: 40px} | |
''' | |
with gr.Blocks(css=css) as demo: | |
x_concept_1 = gr.State("") | |
x_concept_2 = gr.State("") | |
y_concept_1 = gr.State("") | |
y_concept_2 = gr.State("") | |
avg_diff_x_1 = gr.State() | |
avg_diff_x_2 = gr.State() | |
avg_diff_y_1 = gr.State() | |
avg_diff_y_2 = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
prompt = gr.Textbox(label="Prompt") | |
submit = gr.Button("Submit") | |
with gr.Group(elem_id="group"): | |
x = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) | |
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
output_image = gr.Image(elem_id="image_out") | |
submit.click(fn=generate, | |
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], | |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image]) | |
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) | |
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) | |
if __name__ == "__main__": | |
demo.launch() |