Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,1866 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
@@ -7,7 +1870,7 @@ import time
|
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
from PIL import Image
|
10 |
-
from ledits.pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL
|
11 |
|
12 |
def HWC3(x):
|
13 |
assert x.dtype == np.uint8
|
@@ -162,7 +2025,7 @@ def update_y(x,y,prompt, seed, steps,
|
|
162 |
return image
|
163 |
|
164 |
@spaces.GPU
|
165 |
-
def
|
166 |
image = image.resize((512,512))
|
167 |
init_latents,zs = clip_slider_inv.pipe.invert(
|
168 |
source_prompt = "",
|
@@ -334,7 +2197,7 @@ with gr.Blocks(css=css) as demo:
|
|
334 |
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
335 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
336 |
|
337 |
-
image_inv.change(fn=reset_do_inversion, outputs=[do_inversion]).then(fn=
|
338 |
submit_inv.click(fn=generate,
|
339 |
inputs=[slider_x_inv, slider_y_inv, prompt_inv, seed_inv, iterations_inv, steps_inv, guidance_scale_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs],
|
340 |
outputs=[x_inv, y_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_inv])
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import math
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from transformers import (
|
22 |
+
CLIPImageProcessor,
|
23 |
+
CLIPTextModel,
|
24 |
+
CLIPTextModelWithProjection,
|
25 |
+
CLIPTokenizer,
|
26 |
+
CLIPVisionModelWithProjection,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
30 |
+
from diffusers.loaders import (
|
31 |
+
FromSingleFileMixin,
|
32 |
+
IPAdapterMixin,
|
33 |
+
StableDiffusionXLLoraLoaderMixin,
|
34 |
+
TextualInversionLoaderMixin,
|
35 |
+
)
|
36 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
37 |
+
from diffusers.models.attention_processor import (
|
38 |
+
Attention,
|
39 |
+
AttnProcessor,
|
40 |
+
AttnProcessor2_0,
|
41 |
+
XFormersAttnProcessor,
|
42 |
+
)
|
43 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
44 |
+
from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler
|
45 |
+
from diffusers.utils import (
|
46 |
+
USE_PEFT_BACKEND,
|
47 |
+
is_invisible_watermark_available,
|
48 |
+
is_torch_xla_available,
|
49 |
+
logging,
|
50 |
+
replace_example_docstring,
|
51 |
+
scale_lora_layers,
|
52 |
+
unscale_lora_layers,
|
53 |
+
)
|
54 |
+
from diffusers.utils.torch_utils import randn_tensor
|
55 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
56 |
+
from ledits.pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput
|
57 |
+
|
58 |
+
|
59 |
+
if is_invisible_watermark_available():
|
60 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
61 |
+
|
62 |
+
if is_torch_xla_available():
|
63 |
+
import torch_xla.core.xla_model as xm
|
64 |
+
|
65 |
+
XLA_AVAILABLE = True
|
66 |
+
else:
|
67 |
+
XLA_AVAILABLE = False
|
68 |
+
|
69 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
70 |
+
|
71 |
+
EXAMPLE_DOC_STRING = """
|
72 |
+
Examples:
|
73 |
+
```py
|
74 |
+
>>> import torch
|
75 |
+
>>> import PIL
|
76 |
+
>>> import requests
|
77 |
+
>>> from io import BytesIO
|
78 |
+
|
79 |
+
>>> from diffusers import LEditsPPPipelineStableDiffusionXL
|
80 |
+
|
81 |
+
>>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(
|
82 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
83 |
+
... )
|
84 |
+
>>> pipe = pipe.to("cuda")
|
85 |
+
|
86 |
+
|
87 |
+
>>> def download_image(url):
|
88 |
+
... response = requests.get(url)
|
89 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
90 |
+
|
91 |
+
|
92 |
+
>>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg"
|
93 |
+
>>> image = download_image(img_url)
|
94 |
+
|
95 |
+
>>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2)
|
96 |
+
|
97 |
+
>>> edited_image = pipe(
|
98 |
+
... editing_prompt=["tennis ball", "tomato"],
|
99 |
+
... reverse_editing_direction=[True, False],
|
100 |
+
... edit_guidance_scale=[5.0, 10.0],
|
101 |
+
... edit_threshold=[0.9, 0.85],
|
102 |
+
... ).images[0]
|
103 |
+
```
|
104 |
+
"""
|
105 |
+
|
106 |
+
|
107 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore
|
108 |
+
class LeditsAttentionStore:
|
109 |
+
@staticmethod
|
110 |
+
def get_empty_store():
|
111 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
|
112 |
+
|
113 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
|
114 |
+
# attn.shape = batch_size * head_size, seq_len query, seq_len_key
|
115 |
+
if attn.shape[1] <= self.max_size:
|
116 |
+
bs = 1 + int(PnP) + editing_prompts
|
117 |
+
skip = 2 if PnP else 1 # skip PnP & unconditional
|
118 |
+
attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
|
119 |
+
source_batch_size = int(attn.shape[1] // bs)
|
120 |
+
self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)
|
121 |
+
|
122 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
123 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
124 |
+
|
125 |
+
self.step_store[key].append(attn)
|
126 |
+
|
127 |
+
def between_steps(self, store_step=True):
|
128 |
+
if store_step:
|
129 |
+
if self.average:
|
130 |
+
if len(self.attention_store) == 0:
|
131 |
+
self.attention_store = self.step_store
|
132 |
+
else:
|
133 |
+
for key in self.attention_store:
|
134 |
+
for i in range(len(self.attention_store[key])):
|
135 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
136 |
+
else:
|
137 |
+
if len(self.attention_store) == 0:
|
138 |
+
self.attention_store = [self.step_store]
|
139 |
+
else:
|
140 |
+
self.attention_store.append(self.step_store)
|
141 |
+
|
142 |
+
self.cur_step += 1
|
143 |
+
self.step_store = self.get_empty_store()
|
144 |
+
|
145 |
+
def get_attention(self, step: int):
|
146 |
+
if self.average:
|
147 |
+
attention = {
|
148 |
+
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
|
149 |
+
}
|
150 |
+
else:
|
151 |
+
assert step is not None
|
152 |
+
attention = self.attention_store[step]
|
153 |
+
return attention
|
154 |
+
|
155 |
+
def aggregate_attention(
|
156 |
+
self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
|
157 |
+
):
|
158 |
+
out = [[] for x in range(self.batch_size)]
|
159 |
+
if isinstance(res, int):
|
160 |
+
num_pixels = res**2
|
161 |
+
resolution = (res, res)
|
162 |
+
else:
|
163 |
+
num_pixels = res[0] * res[1]
|
164 |
+
resolution = res[:2]
|
165 |
+
|
166 |
+
for location in from_where:
|
167 |
+
for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
168 |
+
for batch, item in enumerate(bs_item):
|
169 |
+
if item.shape[1] == num_pixels:
|
170 |
+
cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
|
171 |
+
out[batch].append(cross_maps)
|
172 |
+
|
173 |
+
out = torch.stack([torch.cat(x, dim=0) for x in out])
|
174 |
+
# average over heads
|
175 |
+
out = out.sum(1) / out.shape[1]
|
176 |
+
return out
|
177 |
+
|
178 |
+
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
|
179 |
+
self.step_store = self.get_empty_store()
|
180 |
+
self.attention_store = []
|
181 |
+
self.cur_step = 0
|
182 |
+
self.average = average
|
183 |
+
self.batch_size = batch_size
|
184 |
+
if max_size is None:
|
185 |
+
self.max_size = max_resolution**2
|
186 |
+
elif max_size is not None and max_resolution is None:
|
187 |
+
self.max_size = max_size
|
188 |
+
else:
|
189 |
+
raise ValueError("Only allowed to set one of max_resolution or max_size")
|
190 |
+
|
191 |
+
|
192 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing
|
193 |
+
class LeditsGaussianSmoothing:
|
194 |
+
def __init__(self, device):
|
195 |
+
kernel_size = [3, 3]
|
196 |
+
sigma = [0.5, 0.5]
|
197 |
+
|
198 |
+
# The gaussian kernel is the product of the gaussian function of each dimension.
|
199 |
+
kernel = 1
|
200 |
+
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
|
201 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
202 |
+
mean = (size - 1) / 2
|
203 |
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
|
204 |
+
|
205 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
206 |
+
kernel = kernel / torch.sum(kernel)
|
207 |
+
|
208 |
+
# Reshape to depthwise convolutional weight
|
209 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
210 |
+
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
|
211 |
+
|
212 |
+
self.weight = kernel.to(device)
|
213 |
+
|
214 |
+
def __call__(self, input):
|
215 |
+
"""
|
216 |
+
Arguments:
|
217 |
+
Apply gaussian filter to input.
|
218 |
+
input (torch.Tensor): Input to apply gaussian filter on.
|
219 |
+
Returns:
|
220 |
+
filtered (torch.Tensor): Filtered output.
|
221 |
+
"""
|
222 |
+
return F.conv2d(input, weight=self.weight.to(input.dtype))
|
223 |
+
|
224 |
+
|
225 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor
|
226 |
+
class LEDITSCrossAttnProcessor:
|
227 |
+
def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
|
228 |
+
self.attnstore = attention_store
|
229 |
+
self.place_in_unet = place_in_unet
|
230 |
+
self.editing_prompts = editing_prompts
|
231 |
+
self.pnp = pnp
|
232 |
+
|
233 |
+
def __call__(
|
234 |
+
self,
|
235 |
+
attn: Attention,
|
236 |
+
hidden_states,
|
237 |
+
encoder_hidden_states,
|
238 |
+
attention_mask=None,
|
239 |
+
temb=None,
|
240 |
+
):
|
241 |
+
batch_size, sequence_length, _ = (
|
242 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
243 |
+
)
|
244 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
245 |
+
|
246 |
+
query = attn.to_q(hidden_states)
|
247 |
+
|
248 |
+
if encoder_hidden_states is None:
|
249 |
+
encoder_hidden_states = hidden_states
|
250 |
+
elif attn.norm_cross:
|
251 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
252 |
+
|
253 |
+
key = attn.to_k(encoder_hidden_states)
|
254 |
+
value = attn.to_v(encoder_hidden_states)
|
255 |
+
|
256 |
+
query = attn.head_to_batch_dim(query)
|
257 |
+
key = attn.head_to_batch_dim(key)
|
258 |
+
value = attn.head_to_batch_dim(value)
|
259 |
+
|
260 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
261 |
+
self.attnstore(
|
262 |
+
attention_probs,
|
263 |
+
is_cross=True,
|
264 |
+
place_in_unet=self.place_in_unet,
|
265 |
+
editing_prompts=self.editing_prompts,
|
266 |
+
PnP=self.pnp,
|
267 |
+
)
|
268 |
+
|
269 |
+
hidden_states = torch.bmm(attention_probs, value)
|
270 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
271 |
+
|
272 |
+
# linear proj
|
273 |
+
hidden_states = attn.to_out[0](hidden_states)
|
274 |
+
# dropout
|
275 |
+
hidden_states = attn.to_out[1](hidden_states)
|
276 |
+
|
277 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
278 |
+
return hidden_states
|
279 |
+
|
280 |
+
|
281 |
+
class LEditsPPPipelineStableDiffusionXL(
|
282 |
+
DiffusionPipeline,
|
283 |
+
FromSingleFileMixin,
|
284 |
+
StableDiffusionXLLoraLoaderMixin,
|
285 |
+
TextualInversionLoaderMixin,
|
286 |
+
IPAdapterMixin,
|
287 |
+
):
|
288 |
+
"""
|
289 |
+
Pipeline for textual image editing using LEDits++ with Stable Diffusion XL.
|
290 |
+
|
291 |
+
This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the
|
292 |
+
superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a
|
293 |
+
particular device, etc.).
|
294 |
+
|
295 |
+
In addition the pipeline inherits the following loading methods:
|
296 |
+
- *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`]
|
297 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
298 |
+
|
299 |
+
as well as the following saving methods:
|
300 |
+
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
301 |
+
|
302 |
+
Args:
|
303 |
+
vae ([`AutoencoderKL`]):
|
304 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
305 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
306 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
307 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
308 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
309 |
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
310 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
311 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
312 |
+
specifically the
|
313 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
314 |
+
variant.
|
315 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
316 |
+
Tokenizer of class
|
317 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
318 |
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
319 |
+
Second Tokenizer of class
|
320 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
321 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
322 |
+
scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
|
323 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
324 |
+
[`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
|
325 |
+
automatically be set to [`DPMSolverMultistepScheduler`].
|
326 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
327 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
328 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
329 |
+
add_watermarker (`bool`, *optional*):
|
330 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
331 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
332 |
+
watermarker will be used.
|
333 |
+
"""
|
334 |
+
|
335 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
336 |
+
_optional_components = [
|
337 |
+
"tokenizer",
|
338 |
+
"tokenizer_2",
|
339 |
+
"text_encoder",
|
340 |
+
"text_encoder_2",
|
341 |
+
"image_encoder",
|
342 |
+
"feature_extractor",
|
343 |
+
]
|
344 |
+
_callback_tensor_inputs = [
|
345 |
+
"latents",
|
346 |
+
"prompt_embeds",
|
347 |
+
"negative_prompt_embeds",
|
348 |
+
"add_text_embeds",
|
349 |
+
"add_time_ids",
|
350 |
+
"negative_pooled_prompt_embeds",
|
351 |
+
"negative_add_time_ids",
|
352 |
+
]
|
353 |
+
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
vae: AutoencoderKL,
|
357 |
+
text_encoder: CLIPTextModel,
|
358 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
359 |
+
tokenizer: CLIPTokenizer,
|
360 |
+
tokenizer_2: CLIPTokenizer,
|
361 |
+
unet: UNet2DConditionModel,
|
362 |
+
scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler],
|
363 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
364 |
+
feature_extractor: CLIPImageProcessor = None,
|
365 |
+
force_zeros_for_empty_prompt: bool = True,
|
366 |
+
add_watermarker: Optional[bool] = None,
|
367 |
+
):
|
368 |
+
super().__init__()
|
369 |
+
|
370 |
+
self.register_modules(
|
371 |
+
vae=vae,
|
372 |
+
text_encoder=text_encoder,
|
373 |
+
text_encoder_2=text_encoder_2,
|
374 |
+
tokenizer=tokenizer,
|
375 |
+
tokenizer_2=tokenizer_2,
|
376 |
+
unet=unet,
|
377 |
+
scheduler=scheduler,
|
378 |
+
image_encoder=image_encoder,
|
379 |
+
feature_extractor=feature_extractor,
|
380 |
+
)
|
381 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
382 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
383 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
384 |
+
|
385 |
+
if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
|
386 |
+
self.scheduler = DPMSolverMultistepScheduler.from_config(
|
387 |
+
scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
|
388 |
+
)
|
389 |
+
logger.warning(
|
390 |
+
"This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
|
391 |
+
"The scheduler has been changed to DPMSolverMultistepScheduler."
|
392 |
+
)
|
393 |
+
|
394 |
+
self.default_sample_size = self.unet.config.sample_size
|
395 |
+
|
396 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
397 |
+
|
398 |
+
if add_watermarker:
|
399 |
+
self.watermark = StableDiffusionXLWatermarker()
|
400 |
+
else:
|
401 |
+
self.watermark = None
|
402 |
+
self.inversion_steps = None
|
403 |
+
|
404 |
+
def encode_prompt(
|
405 |
+
self,
|
406 |
+
device: Optional[torch.device] = None,
|
407 |
+
num_images_per_prompt: int = 1,
|
408 |
+
negative_prompt: Optional[str] = None,
|
409 |
+
negative_prompt_2: Optional[str] = None,
|
410 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
411 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
412 |
+
lora_scale: Optional[float] = None,
|
413 |
+
clip_skip: Optional[int] = None,
|
414 |
+
enable_edit_guidance: bool = True,
|
415 |
+
editing_prompt: Optional[str] = None,
|
416 |
+
editing_prompt_embeds: Optional[torch.Tensor] = None,
|
417 |
+
editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
418 |
+
avg_diff = None,
|
419 |
+
avg_diff_2 = None,
|
420 |
+
correlation_weight_factor = 0.7,
|
421 |
+
scale=2,
|
422 |
+
) -> object:
|
423 |
+
r"""
|
424 |
+
Encodes the prompt into text encoder hidden states.
|
425 |
+
|
426 |
+
Args:
|
427 |
+
device: (`torch.device`):
|
428 |
+
torch device
|
429 |
+
num_images_per_prompt (`int`):
|
430 |
+
number of images that should be generated per prompt
|
431 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
432 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
433 |
+
`negative_prompt_embeds` instead.
|
434 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
435 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
436 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
437 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
438 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
439 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
440 |
+
argument.
|
441 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
442 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
443 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
444 |
+
input argument.
|
445 |
+
lora_scale (`float`, *optional*):
|
446 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
447 |
+
clip_skip (`int`, *optional*):
|
448 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
449 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
450 |
+
enable_edit_guidance (`bool`):
|
451 |
+
Whether to guide towards an editing prompt or not.
|
452 |
+
editing_prompt (`str` or `List[str]`, *optional*):
|
453 |
+
Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass
|
454 |
+
`editing_prompt_embeds` instead.
|
455 |
+
editing_prompt_embeds (`torch.Tensor`, *optional*):
|
456 |
+
Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
457 |
+
If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from
|
458 |
+
`editing_prompt` input argument.
|
459 |
+
editing_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
460 |
+
Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
461 |
+
weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt`
|
462 |
+
input argument.
|
463 |
+
"""
|
464 |
+
device = device or self._execution_device
|
465 |
+
|
466 |
+
# set lora scale so that monkey patched LoRA
|
467 |
+
# function of text encoder can correctly access it
|
468 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
469 |
+
self._lora_scale = lora_scale
|
470 |
+
|
471 |
+
# dynamically adjust the LoRA scale
|
472 |
+
if self.text_encoder is not None:
|
473 |
+
if not USE_PEFT_BACKEND:
|
474 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
475 |
+
else:
|
476 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
477 |
+
|
478 |
+
if self.text_encoder_2 is not None:
|
479 |
+
if not USE_PEFT_BACKEND:
|
480 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
481 |
+
else:
|
482 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
483 |
+
|
484 |
+
batch_size = self.batch_size
|
485 |
+
|
486 |
+
# Define tokenizers and text encoders
|
487 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
488 |
+
text_encoders = (
|
489 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
490 |
+
)
|
491 |
+
num_edit_tokens = 0
|
492 |
+
|
493 |
+
# get unconditional embeddings for classifier free guidance
|
494 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
495 |
+
|
496 |
+
if negative_prompt_embeds is None:
|
497 |
+
negative_prompt = negative_prompt or ""
|
498 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
499 |
+
|
500 |
+
# normalize str to list
|
501 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
502 |
+
negative_prompt_2 = (
|
503 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
504 |
+
)
|
505 |
+
|
506 |
+
uncond_tokens: List[str]
|
507 |
+
|
508 |
+
if batch_size != len(negative_prompt):
|
509 |
+
raise ValueError(
|
510 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion "
|
511 |
+
f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
512 |
+
" the batch size of the input images."
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
516 |
+
|
517 |
+
j=0
|
518 |
+
negative_prompt_embeds_list = []
|
519 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
520 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
521 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
522 |
+
|
523 |
+
|
524 |
+
uncond_input = tokenizer(
|
525 |
+
negative_prompt,
|
526 |
+
padding="max_length",
|
527 |
+
max_length=tokenizer.model_max_length,
|
528 |
+
truncation=True,
|
529 |
+
return_tensors="pt",
|
530 |
+
)
|
531 |
+
toks = uncond_input.input_ids
|
532 |
+
|
533 |
+
negative_prompt_embeds = text_encoder(
|
534 |
+
uncond_input.input_ids.to(device),
|
535 |
+
output_hidden_states=True,
|
536 |
+
)
|
537 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
538 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
539 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
540 |
+
|
541 |
+
if avg_diff is not None and avg_diff_2 is not None:
|
542 |
+
#scale=3
|
543 |
+
print("SHALOM neg")
|
544 |
+
normed_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True)
|
545 |
+
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
546 |
+
if j == 0:
|
547 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
|
548 |
+
|
549 |
+
standard_weights = torch.ones_like(weights)
|
550 |
+
|
551 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
552 |
+
edit_concepts_embeds = negative_prompt_embeds + (weights * avg_diff[None, :].repeat(1,tokenizer.model_max_length, 1) * scale)
|
553 |
+
else:
|
554 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
|
555 |
+
|
556 |
+
standard_weights = torch.ones_like(weights)
|
557 |
+
|
558 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
559 |
+
edit_concepts_embeds = negative_prompt_embeds + (weights * avg_diff_2[None, :].repeat(1, tokenizer.model_max_length, 1) * scale)
|
560 |
+
|
561 |
+
|
562 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
563 |
+
j+=1
|
564 |
+
|
565 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
566 |
+
|
567 |
+
if zero_out_negative_prompt:
|
568 |
+
negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds)
|
569 |
+
negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds)
|
570 |
+
|
571 |
+
if enable_edit_guidance and editing_prompt_embeds is None:
|
572 |
+
editing_prompt_2 = editing_prompt
|
573 |
+
|
574 |
+
editing_prompts = [editing_prompt, editing_prompt_2]
|
575 |
+
edit_prompt_embeds_list = []
|
576 |
+
|
577 |
+
i = 0
|
578 |
+
for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders):
|
579 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
580 |
+
editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer)
|
581 |
+
|
582 |
+
max_length = negative_prompt_embeds.shape[1]
|
583 |
+
edit_concepts_input = tokenizer(
|
584 |
+
# [x for item in editing_prompt for x in repeat(item, batch_size)],
|
585 |
+
editing_prompt,
|
586 |
+
padding="max_length",
|
587 |
+
max_length=max_length,
|
588 |
+
truncation=True,
|
589 |
+
return_tensors="pt",
|
590 |
+
return_length=True,
|
591 |
+
)
|
592 |
+
num_edit_tokens = edit_concepts_input.length - 2
|
593 |
+
toks = edit_concepts_input.input_ids
|
594 |
+
edit_concepts_embeds = text_encoder(
|
595 |
+
edit_concepts_input.input_ids.to(device),
|
596 |
+
output_hidden_states=True,
|
597 |
+
)
|
598 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
599 |
+
editing_pooled_prompt_embeds = edit_concepts_embeds[0]
|
600 |
+
if clip_skip is None:
|
601 |
+
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2]
|
602 |
+
else:
|
603 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
604 |
+
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)]
|
605 |
+
|
606 |
+
print("SHALOM???")
|
607 |
+
if avg_diff is not None and avg_diff_2 is not None:
|
608 |
+
#scale=3
|
609 |
+
print("SHALOM")
|
610 |
+
normed_prompt_embeds = edit_concepts_embeds / edit_concepts_embeds.norm(dim=-1, keepdim=True)
|
611 |
+
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
612 |
+
if i == 0:
|
613 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
|
614 |
+
|
615 |
+
standard_weights = torch.ones_like(weights)
|
616 |
+
|
617 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
618 |
+
edit_concepts_embeds = edit_concepts_embeds + (weights * avg_diff[None, :].repeat(1,tokenizer.model_max_length, 1) * scale)
|
619 |
+
else:
|
620 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
|
621 |
+
|
622 |
+
standard_weights = torch.ones_like(weights)
|
623 |
+
|
624 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
625 |
+
edit_concepts_embeds = edit_concepts_embeds + (weights * avg_diff_2[None, :].repeat(1, tokenizer.model_max_length, 1) * scale)
|
626 |
+
|
627 |
+
edit_prompt_embeds_list.append(edit_concepts_embeds)
|
628 |
+
i+=1
|
629 |
+
|
630 |
+
edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1)
|
631 |
+
elif not enable_edit_guidance:
|
632 |
+
edit_concepts_embeds = None
|
633 |
+
editing_pooled_prompt_embeds = None
|
634 |
+
|
635 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
636 |
+
bs_embed, seq_len, _ = negative_prompt_embeds.shape
|
637 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
638 |
+
seq_len = negative_prompt_embeds.shape[1]
|
639 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
640 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
641 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
642 |
+
|
643 |
+
if enable_edit_guidance:
|
644 |
+
bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape
|
645 |
+
edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
646 |
+
edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1)
|
647 |
+
edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)
|
648 |
+
|
649 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
650 |
+
bs_embed * num_images_per_prompt, -1
|
651 |
+
)
|
652 |
+
|
653 |
+
if enable_edit_guidance:
|
654 |
+
editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
655 |
+
bs_embed_edit * num_images_per_prompt, -1
|
656 |
+
)
|
657 |
+
|
658 |
+
if self.text_encoder is not None:
|
659 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
660 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
661 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
662 |
+
|
663 |
+
if self.text_encoder_2 is not None:
|
664 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
665 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
666 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
667 |
+
|
668 |
+
return (
|
669 |
+
negative_prompt_embeds,
|
670 |
+
edit_concepts_embeds,
|
671 |
+
negative_pooled_prompt_embeds,
|
672 |
+
editing_pooled_prompt_embeds,
|
673 |
+
num_edit_tokens,
|
674 |
+
)
|
675 |
+
|
676 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
677 |
+
def prepare_extra_step_kwargs(self, eta, generator=None):
|
678 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
679 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
680 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
681 |
+
# and should be between [0, 1]
|
682 |
+
|
683 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
684 |
+
extra_step_kwargs = {}
|
685 |
+
if accepts_eta:
|
686 |
+
extra_step_kwargs["eta"] = eta
|
687 |
+
|
688 |
+
# check if the scheduler accepts generator
|
689 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
690 |
+
if accepts_generator:
|
691 |
+
extra_step_kwargs["generator"] = generator
|
692 |
+
return extra_step_kwargs
|
693 |
+
|
694 |
+
def check_inputs(
|
695 |
+
self,
|
696 |
+
negative_prompt=None,
|
697 |
+
negative_prompt_2=None,
|
698 |
+
negative_prompt_embeds=None,
|
699 |
+
negative_pooled_prompt_embeds=None,
|
700 |
+
):
|
701 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
702 |
+
raise ValueError(
|
703 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
704 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
705 |
+
)
|
706 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
707 |
+
raise ValueError(
|
708 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
709 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
710 |
+
)
|
711 |
+
|
712 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
713 |
+
raise ValueError(
|
714 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
715 |
+
)
|
716 |
+
|
717 |
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
718 |
+
def prepare_latents(self, device, latents):
|
719 |
+
latents = latents.to(device)
|
720 |
+
|
721 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
722 |
+
latents = latents * self.scheduler.init_noise_sigma
|
723 |
+
return latents
|
724 |
+
|
725 |
+
def _get_add_time_ids(
|
726 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
727 |
+
):
|
728 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
729 |
+
|
730 |
+
passed_add_embed_dim = (
|
731 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
732 |
+
)
|
733 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
734 |
+
|
735 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
736 |
+
raise ValueError(
|
737 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
738 |
+
)
|
739 |
+
|
740 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
741 |
+
return add_time_ids
|
742 |
+
|
743 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
744 |
+
def upcast_vae(self):
|
745 |
+
dtype = self.vae.dtype
|
746 |
+
self.vae.to(dtype=torch.float32)
|
747 |
+
use_torch_2_0_or_xformers = isinstance(
|
748 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
749 |
+
(
|
750 |
+
AttnProcessor2_0,
|
751 |
+
XFormersAttnProcessor,
|
752 |
+
),
|
753 |
+
)
|
754 |
+
# if xformers or torch_2_0 is used attention block does not need
|
755 |
+
# to be in float32 which can save lots of memory
|
756 |
+
if use_torch_2_0_or_xformers:
|
757 |
+
self.vae.post_quant_conv.to(dtype)
|
758 |
+
self.vae.decoder.conv_in.to(dtype)
|
759 |
+
self.vae.decoder.mid_block.to(dtype)
|
760 |
+
|
761 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
762 |
+
def get_guidance_scale_embedding(
|
763 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
764 |
+
) -> torch.Tensor:
|
765 |
+
"""
|
766 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
767 |
+
|
768 |
+
Args:
|
769 |
+
w (`torch.Tensor`):
|
770 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
771 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
772 |
+
Dimension of the embeddings to generate.
|
773 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
774 |
+
Data type of the generated embeddings.
|
775 |
+
|
776 |
+
Returns:
|
777 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
778 |
+
"""
|
779 |
+
assert len(w.shape) == 1
|
780 |
+
w = w * 1000.0
|
781 |
+
|
782 |
+
half_dim = embedding_dim // 2
|
783 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
784 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
785 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
786 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
787 |
+
if embedding_dim % 2 == 1: # zero pad
|
788 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
789 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
790 |
+
return emb
|
791 |
+
|
792 |
+
@property
|
793 |
+
def guidance_scale(self):
|
794 |
+
return self._guidance_scale
|
795 |
+
|
796 |
+
@property
|
797 |
+
def guidance_rescale(self):
|
798 |
+
return self._guidance_rescale
|
799 |
+
|
800 |
+
@property
|
801 |
+
def clip_skip(self):
|
802 |
+
return self._clip_skip
|
803 |
+
|
804 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
805 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
806 |
+
# corresponds to doing no classifier free guidance.
|
807 |
+
@property
|
808 |
+
def do_classifier_free_guidance(self):
|
809 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
810 |
+
|
811 |
+
@property
|
812 |
+
def cross_attention_kwargs(self):
|
813 |
+
return self._cross_attention_kwargs
|
814 |
+
|
815 |
+
@property
|
816 |
+
def denoising_end(self):
|
817 |
+
return self._denoising_end
|
818 |
+
|
819 |
+
@property
|
820 |
+
def num_timesteps(self):
|
821 |
+
return self._num_timesteps
|
822 |
+
|
823 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet
|
824 |
+
def prepare_unet(self, attention_store, PnP: bool = False):
|
825 |
+
attn_procs = {}
|
826 |
+
for name in self.unet.attn_processors.keys():
|
827 |
+
if name.startswith("mid_block"):
|
828 |
+
place_in_unet = "mid"
|
829 |
+
elif name.startswith("up_blocks"):
|
830 |
+
place_in_unet = "up"
|
831 |
+
elif name.startswith("down_blocks"):
|
832 |
+
place_in_unet = "down"
|
833 |
+
else:
|
834 |
+
continue
|
835 |
+
|
836 |
+
if "attn2" in name and place_in_unet != "mid":
|
837 |
+
attn_procs[name] = LEDITSCrossAttnProcessor(
|
838 |
+
attention_store=attention_store,
|
839 |
+
place_in_unet=place_in_unet,
|
840 |
+
pnp=PnP,
|
841 |
+
editing_prompts=self.enabled_editing_prompts,
|
842 |
+
)
|
843 |
+
else:
|
844 |
+
attn_procs[name] = AttnProcessor()
|
845 |
+
|
846 |
+
self.unet.set_attn_processor(attn_procs)
|
847 |
+
|
848 |
+
@spaces.GPU
|
849 |
+
@torch.no_grad()
|
850 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
851 |
+
def __call__(
|
852 |
+
self,
|
853 |
+
denoising_end: Optional[float] = None,
|
854 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
855 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
856 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
857 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
858 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
859 |
+
output_type: Optional[str] = "pil",
|
860 |
+
return_dict: bool = True,
|
861 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
862 |
+
guidance_rescale: float = 0.0,
|
863 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
864 |
+
target_size: Optional[Tuple[int, int]] = None,
|
865 |
+
editing_prompt: Optional[Union[str, List[str]]] = None,
|
866 |
+
editing_prompt_embeddings: Optional[torch.Tensor] = None,
|
867 |
+
editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
868 |
+
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
|
869 |
+
edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
|
870 |
+
edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
|
871 |
+
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
872 |
+
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
873 |
+
sem_guidance: Optional[List[torch.Tensor]] = None,
|
874 |
+
use_cross_attn_mask: bool = False,
|
875 |
+
use_intersect_mask: bool = False,
|
876 |
+
user_mask: Optional[torch.Tensor] = None,
|
877 |
+
attn_store_steps: Optional[List[int]] = [],
|
878 |
+
store_averaged_over_steps: bool = True,
|
879 |
+
clip_skip: Optional[int] = None,
|
880 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
881 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
882 |
+
avg_diff = None,
|
883 |
+
avg_diff_2 = None,
|
884 |
+
correlation_weight_factor = 0.7,
|
885 |
+
scale=2,
|
886 |
+
init_latents: [torch.Tensor] = None,
|
887 |
+
zs: [torch.Tensor] = None,
|
888 |
+
**kwargs,
|
889 |
+
):
|
890 |
+
r"""
|
891 |
+
The call function to the pipeline for editing. The
|
892 |
+
[`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits
|
893 |
+
will always be performed for the last inverted image(s).
|
894 |
+
|
895 |
+
Args:
|
896 |
+
denoising_end (`float`, *optional*):
|
897 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
898 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
899 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
900 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
901 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
902 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
903 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
904 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
905 |
+
less than `1`).
|
906 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
907 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
908 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
909 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
910 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
911 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
912 |
+
argument.
|
913 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
914 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
915 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
916 |
+
input argument.
|
917 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
918 |
+
Optional image input to work with IP Adapters.
|
919 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
920 |
+
The output format of the generate image. Choose between
|
921 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
922 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
923 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
924 |
+
of a plain tuple.
|
925 |
+
callback (`Callable`, *optional*):
|
926 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
927 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
928 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
929 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
930 |
+
called at every step.
|
931 |
+
cross_attention_kwargs (`dict`, *optional*):
|
932 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
933 |
+
`self.processor` in
|
934 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
935 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
936 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
937 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
938 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
939 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
940 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
941 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
942 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
943 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
944 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
945 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
946 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
947 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
948 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
949 |
+
editing_prompt (`str` or `List[str]`, *optional*):
|
950 |
+
The prompt or prompts to guide the image generation. The image is reconstructed by setting
|
951 |
+
`editing_prompt = None`. Guidance direction of prompt should be specified via
|
952 |
+
`reverse_editing_direction`.
|
953 |
+
editing_prompt_embeddings (`torch.Tensor`, *optional*):
|
954 |
+
Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
955 |
+
If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument.
|
956 |
+
editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*):
|
957 |
+
Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
958 |
+
weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input
|
959 |
+
argument.
|
960 |
+
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
|
961 |
+
Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
|
962 |
+
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
|
963 |
+
Guidance scale for guiding the image generation. If provided as list values should correspond to
|
964 |
+
`editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
|
965 |
+
Paper](https://arxiv.org/abs/2301.12247).
|
966 |
+
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
|
967 |
+
Number of diffusion steps (for each prompt) for which guidance is not applied.
|
968 |
+
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
|
969 |
+
Number of diffusion steps (for each prompt) after which guidance is no longer applied.
|
970 |
+
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
|
971 |
+
Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
|
972 |
+
'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++
|
973 |
+
Paper](https://arxiv.org/abs/2301.12247).
|
974 |
+
sem_guidance (`List[torch.Tensor]`, *optional*):
|
975 |
+
List of pre-generated guidance vectors to be applied at generation. Length of the list has to
|
976 |
+
correspond to `num_inference_steps`.
|
977 |
+
use_cross_attn_mask:
|
978 |
+
Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
|
979 |
+
is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
|
980 |
+
paper](https://arxiv.org/pdf/2311.16711.pdf).
|
981 |
+
use_intersect_mask:
|
982 |
+
Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
|
983 |
+
the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
|
984 |
+
are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
|
985 |
+
user_mask:
|
986 |
+
User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
|
987 |
+
implicit masks do not meet user preferences.
|
988 |
+
attn_store_steps:
|
989 |
+
Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
|
990 |
+
store_averaged_over_steps:
|
991 |
+
Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
|
992 |
+
False, attention maps for each step are stores separately. Just for visualization purposes.
|
993 |
+
clip_skip (`int`, *optional*):
|
994 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
995 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
996 |
+
callback_on_step_end (`Callable`, *optional*):
|
997 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
998 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
999 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1000 |
+
`callback_on_step_end_tensor_inputs`.
|
1001 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1002 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1003 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1004 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1005 |
+
|
1006 |
+
Examples:
|
1007 |
+
|
1008 |
+
Returns:
|
1009 |
+
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
|
1010 |
+
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
|
1011 |
+
returning a tuple, the first element is a list with the generated images.
|
1012 |
+
"""
|
1013 |
+
if self.inversion_steps is None:
|
1014 |
+
raise ValueError(
|
1015 |
+
"You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
eta = self.eta
|
1019 |
+
num_images_per_prompt = 1
|
1020 |
+
#latents = self.init_latents
|
1021 |
+
latents = init_latents
|
1022 |
+
|
1023 |
+
#zs = self.zs
|
1024 |
+
self.scheduler.set_timesteps(len(self.scheduler.timesteps))
|
1025 |
+
|
1026 |
+
if use_intersect_mask:
|
1027 |
+
use_cross_attn_mask = True
|
1028 |
+
|
1029 |
+
if use_cross_attn_mask:
|
1030 |
+
self.smoothing = LeditsGaussianSmoothing(self.device)
|
1031 |
+
|
1032 |
+
if user_mask is not None:
|
1033 |
+
user_mask = user_mask.to(self.device)
|
1034 |
+
|
1035 |
+
# TODO: Check inputs
|
1036 |
+
# 1. Check inputs. Raise error if not correct
|
1037 |
+
# self.check_inputs(
|
1038 |
+
# callback_steps,
|
1039 |
+
# negative_prompt,
|
1040 |
+
# negative_prompt_2,
|
1041 |
+
# prompt_embeds,
|
1042 |
+
# negative_prompt_embeds,
|
1043 |
+
# pooled_prompt_embeds,
|
1044 |
+
# negative_pooled_prompt_embeds,
|
1045 |
+
# )
|
1046 |
+
self._guidance_rescale = guidance_rescale
|
1047 |
+
self._clip_skip = clip_skip
|
1048 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1049 |
+
self._denoising_end = denoising_end
|
1050 |
+
|
1051 |
+
# 2. Define call parameters
|
1052 |
+
batch_size = self.batch_size
|
1053 |
+
|
1054 |
+
device = self._execution_device
|
1055 |
+
|
1056 |
+
if editing_prompt:
|
1057 |
+
enable_edit_guidance = True
|
1058 |
+
if isinstance(editing_prompt, str):
|
1059 |
+
editing_prompt = [editing_prompt]
|
1060 |
+
self.enabled_editing_prompts = len(editing_prompt)
|
1061 |
+
elif editing_prompt_embeddings is not None:
|
1062 |
+
enable_edit_guidance = True
|
1063 |
+
self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
1064 |
+
else:
|
1065 |
+
self.enabled_editing_prompts = 0
|
1066 |
+
enable_edit_guidance = False
|
1067 |
+
print("negative_prompt", negative_prompt)
|
1068 |
+
# 3. Encode input prompt
|
1069 |
+
text_encoder_lora_scale = (
|
1070 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1071 |
+
)
|
1072 |
+
(
|
1073 |
+
prompt_embeds,
|
1074 |
+
edit_prompt_embeds,
|
1075 |
+
negative_pooled_prompt_embeds,
|
1076 |
+
pooled_edit_embeds,
|
1077 |
+
num_edit_tokens,
|
1078 |
+
) = self.encode_prompt(
|
1079 |
+
device=device,
|
1080 |
+
num_images_per_prompt=num_images_per_prompt,
|
1081 |
+
negative_prompt=negative_prompt,
|
1082 |
+
negative_prompt_2=negative_prompt_2,
|
1083 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1084 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1085 |
+
lora_scale=text_encoder_lora_scale,
|
1086 |
+
clip_skip=self.clip_skip,
|
1087 |
+
enable_edit_guidance=enable_edit_guidance,
|
1088 |
+
editing_prompt=editing_prompt,
|
1089 |
+
editing_prompt_embeds=editing_prompt_embeddings,
|
1090 |
+
editing_pooled_prompt_embeds=editing_pooled_prompt_embeds,
|
1091 |
+
avg_diff = avg_diff,
|
1092 |
+
avg_diff_2 = avg_diff_2,
|
1093 |
+
correlation_weight_factor = correlation_weight_factor,
|
1094 |
+
scale=scale,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
# 4. Prepare timesteps
|
1098 |
+
# self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1099 |
+
|
1100 |
+
timesteps = self.inversion_steps
|
1101 |
+
timesteps = inversion_steps
|
1102 |
+
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
|
1103 |
+
|
1104 |
+
if use_cross_attn_mask:
|
1105 |
+
self.attention_store = LeditsAttentionStore(
|
1106 |
+
average=store_averaged_over_steps,
|
1107 |
+
batch_size=batch_size,
|
1108 |
+
max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
|
1109 |
+
max_resolution=None,
|
1110 |
+
)
|
1111 |
+
self.prepare_unet(self.attention_store)
|
1112 |
+
resolution = latents.shape[-2:]
|
1113 |
+
att_res = (int(resolution[0] / 4), int(resolution[1] / 4))
|
1114 |
+
|
1115 |
+
# 5. Prepare latent variables
|
1116 |
+
latents = self.prepare_latents(device=device, latents=latents)
|
1117 |
+
|
1118 |
+
# 6. Prepare extra step kwargs.
|
1119 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
|
1120 |
+
|
1121 |
+
if self.text_encoder_2 is None:
|
1122 |
+
text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
|
1123 |
+
else:
|
1124 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1125 |
+
|
1126 |
+
# 7. Prepare added time ids & embeddings
|
1127 |
+
add_text_embeds = negative_pooled_prompt_embeds
|
1128 |
+
add_time_ids = self._get_add_time_ids(
|
1129 |
+
self.size,
|
1130 |
+
crops_coords_top_left,
|
1131 |
+
self.size,
|
1132 |
+
dtype=negative_pooled_prompt_embeds.dtype,
|
1133 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
if enable_edit_guidance:
|
1137 |
+
prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0)
|
1138 |
+
add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0)
|
1139 |
+
edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1)
|
1140 |
+
add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0)
|
1141 |
+
self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt
|
1142 |
+
|
1143 |
+
prompt_embeds = prompt_embeds.to(device)
|
1144 |
+
add_text_embeds = add_text_embeds.to(device)
|
1145 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1146 |
+
|
1147 |
+
if ip_adapter_image is not None:
|
1148 |
+
# TODO: fix image encoding
|
1149 |
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1150 |
+
if self.do_classifier_free_guidance:
|
1151 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1152 |
+
image_embeds = image_embeds.to(device)
|
1153 |
+
|
1154 |
+
# 8. Denoising loop
|
1155 |
+
self.sem_guidance = None
|
1156 |
+
self.activation_mask = None
|
1157 |
+
|
1158 |
+
if (
|
1159 |
+
self.denoising_end is not None
|
1160 |
+
and isinstance(self.denoising_end, float)
|
1161 |
+
and self.denoising_end > 0
|
1162 |
+
and self.denoising_end < 1
|
1163 |
+
):
|
1164 |
+
discrete_timestep_cutoff = int(
|
1165 |
+
round(
|
1166 |
+
self.scheduler.config.num_train_timesteps
|
1167 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1168 |
+
)
|
1169 |
+
)
|
1170 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1171 |
+
timesteps = timesteps[:num_inference_steps]
|
1172 |
+
|
1173 |
+
# 9. Optionally get Guidance Scale Embedding
|
1174 |
+
timestep_cond = None
|
1175 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1176 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1177 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1178 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1179 |
+
).to(device=device, dtype=latents.dtype)
|
1180 |
+
|
1181 |
+
self._num_timesteps = len(timesteps)
|
1182 |
+
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
1183 |
+
for i, t in enumerate(timesteps):
|
1184 |
+
# expand the latents if we are doing classifier free guidance
|
1185 |
+
latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
|
1186 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1187 |
+
# predict the noise residual
|
1188 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1189 |
+
if ip_adapter_image is not None:
|
1190 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1191 |
+
noise_pred = self.unet(
|
1192 |
+
latent_model_input,
|
1193 |
+
t,
|
1194 |
+
encoder_hidden_states=prompt_embeds,
|
1195 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1196 |
+
added_cond_kwargs=added_cond_kwargs,
|
1197 |
+
return_dict=False,
|
1198 |
+
)[0]
|
1199 |
+
|
1200 |
+
noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64]
|
1201 |
+
noise_pred_uncond = noise_pred_out[0]
|
1202 |
+
noise_pred_edit_concepts = noise_pred_out[1:]
|
1203 |
+
|
1204 |
+
noise_guidance_edit = torch.zeros(
|
1205 |
+
noise_pred_uncond.shape,
|
1206 |
+
device=self.device,
|
1207 |
+
dtype=noise_pred_uncond.dtype,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
if sem_guidance is not None and len(sem_guidance) > i:
|
1211 |
+
noise_guidance_edit += sem_guidance[i].to(self.device)
|
1212 |
+
|
1213 |
+
elif enable_edit_guidance:
|
1214 |
+
if self.activation_mask is None:
|
1215 |
+
self.activation_mask = torch.zeros(
|
1216 |
+
(len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape)
|
1217 |
+
)
|
1218 |
+
if self.sem_guidance is None:
|
1219 |
+
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
|
1220 |
+
|
1221 |
+
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
1222 |
+
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
1223 |
+
if isinstance(edit_warmup_steps, list):
|
1224 |
+
edit_warmup_steps_c = edit_warmup_steps[c]
|
1225 |
+
else:
|
1226 |
+
edit_warmup_steps_c = edit_warmup_steps
|
1227 |
+
if i < edit_warmup_steps_c:
|
1228 |
+
continue
|
1229 |
+
|
1230 |
+
if isinstance(edit_guidance_scale, list):
|
1231 |
+
edit_guidance_scale_c = edit_guidance_scale[c]
|
1232 |
+
else:
|
1233 |
+
edit_guidance_scale_c = edit_guidance_scale
|
1234 |
+
|
1235 |
+
if isinstance(edit_threshold, list):
|
1236 |
+
edit_threshold_c = edit_threshold[c]
|
1237 |
+
else:
|
1238 |
+
edit_threshold_c = edit_threshold
|
1239 |
+
if isinstance(reverse_editing_direction, list):
|
1240 |
+
reverse_editing_direction_c = reverse_editing_direction[c]
|
1241 |
+
else:
|
1242 |
+
reverse_editing_direction_c = reverse_editing_direction
|
1243 |
+
|
1244 |
+
if isinstance(edit_cooldown_steps, list):
|
1245 |
+
edit_cooldown_steps_c = edit_cooldown_steps[c]
|
1246 |
+
elif edit_cooldown_steps is None:
|
1247 |
+
edit_cooldown_steps_c = i + 1
|
1248 |
+
else:
|
1249 |
+
edit_cooldown_steps_c = edit_cooldown_steps
|
1250 |
+
|
1251 |
+
if i >= edit_cooldown_steps_c:
|
1252 |
+
continue
|
1253 |
+
|
1254 |
+
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
|
1255 |
+
|
1256 |
+
if reverse_editing_direction_c:
|
1257 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
|
1258 |
+
|
1259 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
1260 |
+
|
1261 |
+
if user_mask is not None:
|
1262 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
|
1263 |
+
|
1264 |
+
if use_cross_attn_mask:
|
1265 |
+
out = self.attention_store.aggregate_attention(
|
1266 |
+
attention_maps=self.attention_store.step_store,
|
1267 |
+
prompts=self.text_cross_attention_maps,
|
1268 |
+
res=att_res,
|
1269 |
+
from_where=["up", "down"],
|
1270 |
+
is_cross=True,
|
1271 |
+
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
1272 |
+
)
|
1273 |
+
attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext
|
1274 |
+
|
1275 |
+
# average over all tokens
|
1276 |
+
if attn_map.shape[3] != num_edit_tokens[c]:
|
1277 |
+
raise ValueError(
|
1278 |
+
f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
|
1279 |
+
)
|
1280 |
+
attn_map = torch.sum(attn_map, dim=3)
|
1281 |
+
|
1282 |
+
# gaussian_smoothing
|
1283 |
+
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
|
1284 |
+
attn_map = self.smoothing(attn_map).squeeze(1)
|
1285 |
+
|
1286 |
+
# torch.quantile function expects float32
|
1287 |
+
if attn_map.dtype == torch.float32:
|
1288 |
+
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
|
1289 |
+
else:
|
1290 |
+
tmp = torch.quantile(
|
1291 |
+
attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
|
1292 |
+
).to(attn_map.dtype)
|
1293 |
+
attn_mask = torch.where(
|
1294 |
+
attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
# resolution must match latent space dimension
|
1298 |
+
attn_mask = F.interpolate(
|
1299 |
+
attn_mask.unsqueeze(1),
|
1300 |
+
noise_guidance_edit_tmp.shape[-2:], # 64,64
|
1301 |
+
).repeat(1, 4, 1, 1)
|
1302 |
+
self.activation_mask[i, c] = attn_mask.detach().cpu()
|
1303 |
+
if not use_intersect_mask:
|
1304 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
|
1305 |
+
|
1306 |
+
if use_intersect_mask:
|
1307 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
1308 |
+
noise_guidance_edit_tmp_quantile = torch.sum(
|
1309 |
+
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
|
1310 |
+
)
|
1311 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
|
1312 |
+
1, self.unet.config.in_channels, 1, 1
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
# torch.quantile function expects float32
|
1316 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
1317 |
+
tmp = torch.quantile(
|
1318 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
1319 |
+
edit_threshold_c,
|
1320 |
+
dim=2,
|
1321 |
+
keepdim=False,
|
1322 |
+
)
|
1323 |
+
else:
|
1324 |
+
tmp = torch.quantile(
|
1325 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
1326 |
+
edit_threshold_c,
|
1327 |
+
dim=2,
|
1328 |
+
keepdim=False,
|
1329 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
1330 |
+
|
1331 |
+
intersect_mask = (
|
1332 |
+
torch.where(
|
1333 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1334 |
+
torch.ones_like(noise_guidance_edit_tmp),
|
1335 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1336 |
+
)
|
1337 |
+
* attn_mask
|
1338 |
+
)
|
1339 |
+
|
1340 |
+
self.activation_mask[i, c] = intersect_mask.detach().cpu()
|
1341 |
+
|
1342 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
|
1343 |
+
|
1344 |
+
elif not use_cross_attn_mask:
|
1345 |
+
# calculate quantile
|
1346 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
1347 |
+
noise_guidance_edit_tmp_quantile = torch.sum(
|
1348 |
+
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
|
1349 |
+
)
|
1350 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
|
1351 |
+
|
1352 |
+
# torch.quantile function expects float32
|
1353 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
1354 |
+
tmp = torch.quantile(
|
1355 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
1356 |
+
edit_threshold_c,
|
1357 |
+
dim=2,
|
1358 |
+
keepdim=False,
|
1359 |
+
)
|
1360 |
+
else:
|
1361 |
+
tmp = torch.quantile(
|
1362 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
1363 |
+
edit_threshold_c,
|
1364 |
+
dim=2,
|
1365 |
+
keepdim=False,
|
1366 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
1367 |
+
|
1368 |
+
self.activation_mask[i, c] = (
|
1369 |
+
torch.where(
|
1370 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1371 |
+
torch.ones_like(noise_guidance_edit_tmp),
|
1372 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1373 |
+
)
|
1374 |
+
.detach()
|
1375 |
+
.cpu()
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
noise_guidance_edit_tmp = torch.where(
|
1379 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1380 |
+
noise_guidance_edit_tmp,
|
1381 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
noise_guidance_edit += noise_guidance_edit_tmp
|
1385 |
+
|
1386 |
+
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
1387 |
+
|
1388 |
+
noise_pred = noise_pred_uncond + noise_guidance_edit
|
1389 |
+
|
1390 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1391 |
+
if enable_edit_guidance and self.guidance_rescale > 0.0:
|
1392 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1393 |
+
noise_pred = rescale_noise_cfg(
|
1394 |
+
noise_pred,
|
1395 |
+
noise_pred_edit_concepts.mean(dim=0, keepdim=False),
|
1396 |
+
guidance_rescale=self.guidance_rescale,
|
1397 |
+
)
|
1398 |
+
|
1399 |
+
idx = t_to_idx[int(t)]
|
1400 |
+
latents = self.scheduler.step(
|
1401 |
+
noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False
|
1402 |
+
)[0]
|
1403 |
+
|
1404 |
+
# step callback
|
1405 |
+
if use_cross_attn_mask:
|
1406 |
+
store_step = i in attn_store_steps
|
1407 |
+
self.attention_store.between_steps(store_step)
|
1408 |
+
|
1409 |
+
if callback_on_step_end is not None:
|
1410 |
+
callback_kwargs = {}
|
1411 |
+
for k in callback_on_step_end_tensor_inputs:
|
1412 |
+
callback_kwargs[k] = locals()[k]
|
1413 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1414 |
+
|
1415 |
+
latents = callback_outputs.pop("latents", latents)
|
1416 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1417 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1418 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1419 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1420 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1421 |
+
)
|
1422 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1423 |
+
# negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1424 |
+
|
1425 |
+
# call the callback, if provided
|
1426 |
+
if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0):
|
1427 |
+
progress_bar.update()
|
1428 |
+
|
1429 |
+
if XLA_AVAILABLE:
|
1430 |
+
xm.mark_step()
|
1431 |
+
|
1432 |
+
if not output_type == "latent":
|
1433 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1434 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1435 |
+
|
1436 |
+
if needs_upcasting:
|
1437 |
+
self.upcast_vae()
|
1438 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1439 |
+
|
1440 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1441 |
+
|
1442 |
+
# cast back to fp16 if needed
|
1443 |
+
if needs_upcasting:
|
1444 |
+
self.vae.to(dtype=torch.float16)
|
1445 |
+
else:
|
1446 |
+
image = latents
|
1447 |
+
|
1448 |
+
if not output_type == "latent":
|
1449 |
+
# apply watermark if available
|
1450 |
+
if self.watermark is not None:
|
1451 |
+
image = self.watermark.apply_watermark(image)
|
1452 |
+
|
1453 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1454 |
+
|
1455 |
+
# Offload all models
|
1456 |
+
self.maybe_free_model_hooks()
|
1457 |
+
|
1458 |
+
if not return_dict:
|
1459 |
+
return (image,)
|
1460 |
+
|
1461 |
+
return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
1462 |
+
|
1463 |
+
@torch.no_grad()
|
1464 |
+
# Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image
|
1465 |
+
def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
|
1466 |
+
image = self.image_processor.preprocess(
|
1467 |
+
image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1468 |
+
)
|
1469 |
+
resized = self.image_processor.postprocess(image=image, output_type="pil")
|
1470 |
+
|
1471 |
+
if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
|
1472 |
+
logger.warning(
|
1473 |
+
"Your input images far exceed the default resolution of the underlying diffusion model. "
|
1474 |
+
"The output images may contain severe artifacts! "
|
1475 |
+
"Consider down-sampling the input using the `height` and `width` parameters"
|
1476 |
+
)
|
1477 |
+
image = image.to(self.device, dtype=dtype)
|
1478 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1479 |
+
|
1480 |
+
if needs_upcasting:
|
1481 |
+
image = image.float()
|
1482 |
+
self.upcast_vae()
|
1483 |
+
|
1484 |
+
x0 = self.vae.encode(image).latent_dist.mode()
|
1485 |
+
x0 = x0.to(dtype)
|
1486 |
+
# cast back to fp16 if needed
|
1487 |
+
if needs_upcasting:
|
1488 |
+
self.vae.to(dtype=torch.float16)
|
1489 |
+
|
1490 |
+
x0 = self.vae.config.scaling_factor * x0
|
1491 |
+
return x0, resized
|
1492 |
+
|
1493 |
+
@spaces.GPU
|
1494 |
+
@torch.no_grad()
|
1495 |
+
def invert(
|
1496 |
+
self,
|
1497 |
+
image: PipelineImageInput,
|
1498 |
+
source_prompt: str = "",
|
1499 |
+
source_guidance_scale=3.5,
|
1500 |
+
negative_prompt: str = None,
|
1501 |
+
negative_prompt_2: str = None,
|
1502 |
+
num_inversion_steps: int = 50,
|
1503 |
+
skip: float = 0.15,
|
1504 |
+
generator: Optional[torch.Generator] = None,
|
1505 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1506 |
+
num_zero_noise_steps: int = 3,
|
1507 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1508 |
+
):
|
1509 |
+
r"""
|
1510 |
+
The function to the pipeline for image inversion as described by the [LEDITS++
|
1511 |
+
Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
|
1512 |
+
inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
|
1513 |
+
|
1514 |
+
Args:
|
1515 |
+
image (`PipelineImageInput`):
|
1516 |
+
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
|
1517 |
+
ratio.
|
1518 |
+
source_prompt (`str`, defaults to `""`):
|
1519 |
+
Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
|
1520 |
+
if the `source_prompt` is `""`.
|
1521 |
+
source_guidance_scale (`float`, defaults to `3.5`):
|
1522 |
+
Strength of guidance during inversion.
|
1523 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1524 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1525 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1526 |
+
less than `1`).
|
1527 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1528 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1529 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1530 |
+
num_inversion_steps (`int`, defaults to `50`):
|
1531 |
+
Number of total performed inversion steps after discarding the initial `skip` steps.
|
1532 |
+
skip (`float`, defaults to `0.15`):
|
1533 |
+
Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
|
1534 |
+
will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
|
1535 |
+
generator (`torch.Generator`, *optional*):
|
1536 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
|
1537 |
+
deterministic.
|
1538 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1539 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1540 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1541 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1542 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1543 |
+
num_zero_noise_steps (`int`, defaults to `3`):
|
1544 |
+
Number of final diffusion steps that will not renoise the current image. If no steps are set to zero
|
1545 |
+
SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts.
|
1546 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1547 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1548 |
+
`self.processor` in
|
1549 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1550 |
+
|
1551 |
+
Returns:
|
1552 |
+
[`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
|
1553 |
+
and respective VAE reconstruction(s).
|
1554 |
+
"""
|
1555 |
+
|
1556 |
+
# Reset attn processor, we do not want to store attn maps during inversion
|
1557 |
+
self.unet.set_attn_processor(AttnProcessor())
|
1558 |
+
|
1559 |
+
self.eta = 1.0
|
1560 |
+
|
1561 |
+
self.scheduler.config.timestep_spacing = "leading"
|
1562 |
+
self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
|
1563 |
+
self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
|
1564 |
+
timesteps = self.inversion_steps
|
1565 |
+
|
1566 |
+
num_images_per_prompt = 1
|
1567 |
+
|
1568 |
+
device = self._execution_device
|
1569 |
+
|
1570 |
+
# 0. Ensure that only uncond embedding is used if prompt = ""
|
1571 |
+
if source_prompt == "":
|
1572 |
+
# noise pred should only be noise_pred_uncond
|
1573 |
+
source_guidance_scale = 0.0
|
1574 |
+
do_classifier_free_guidance = False
|
1575 |
+
else:
|
1576 |
+
do_classifier_free_guidance = source_guidance_scale > 1.0
|
1577 |
+
|
1578 |
+
# 1. prepare image
|
1579 |
+
x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype)
|
1580 |
+
width = x0.shape[2] * self.vae_scale_factor
|
1581 |
+
height = x0.shape[3] * self.vae_scale_factor
|
1582 |
+
self.size = (height, width)
|
1583 |
+
|
1584 |
+
self.batch_size = x0.shape[0]
|
1585 |
+
|
1586 |
+
# 2. get embeddings
|
1587 |
+
text_encoder_lora_scale = (
|
1588 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1589 |
+
)
|
1590 |
+
|
1591 |
+
if isinstance(source_prompt, str):
|
1592 |
+
source_prompt = [source_prompt] * self.batch_size
|
1593 |
+
|
1594 |
+
(
|
1595 |
+
negative_prompt_embeds,
|
1596 |
+
prompt_embeds,
|
1597 |
+
negative_pooled_prompt_embeds,
|
1598 |
+
edit_pooled_prompt_embeds,
|
1599 |
+
_,
|
1600 |
+
) = self.encode_prompt(
|
1601 |
+
device=device,
|
1602 |
+
num_images_per_prompt=num_images_per_prompt,
|
1603 |
+
negative_prompt=negative_prompt,
|
1604 |
+
negative_prompt_2=negative_prompt_2,
|
1605 |
+
editing_prompt=source_prompt,
|
1606 |
+
lora_scale=text_encoder_lora_scale,
|
1607 |
+
enable_edit_guidance=do_classifier_free_guidance,
|
1608 |
+
)
|
1609 |
+
if self.text_encoder_2 is None:
|
1610 |
+
text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
|
1611 |
+
else:
|
1612 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1613 |
+
|
1614 |
+
# 3. Prepare added time ids & embeddings
|
1615 |
+
add_text_embeds = negative_pooled_prompt_embeds
|
1616 |
+
add_time_ids = self._get_add_time_ids(
|
1617 |
+
self.size,
|
1618 |
+
crops_coords_top_left,
|
1619 |
+
self.size,
|
1620 |
+
dtype=negative_prompt_embeds.dtype,
|
1621 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1622 |
+
)
|
1623 |
+
|
1624 |
+
if do_classifier_free_guidance:
|
1625 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1626 |
+
add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0)
|
1627 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1628 |
+
|
1629 |
+
negative_prompt_embeds = negative_prompt_embeds.to(device)
|
1630 |
+
|
1631 |
+
add_text_embeds = add_text_embeds.to(device)
|
1632 |
+
add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1)
|
1633 |
+
|
1634 |
+
# autoencoder reconstruction
|
1635 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1636 |
+
self.upcast_vae()
|
1637 |
+
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1638 |
+
image_rec = self.vae.decode(
|
1639 |
+
x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
|
1640 |
+
)[0]
|
1641 |
+
elif self.vae.config.force_upcast:
|
1642 |
+
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1643 |
+
image_rec = self.vae.decode(
|
1644 |
+
x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
|
1645 |
+
)[0]
|
1646 |
+
else:
|
1647 |
+
image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
|
1648 |
+
|
1649 |
+
image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
|
1650 |
+
|
1651 |
+
# 5. find zs and xts
|
1652 |
+
variance_noise_shape = (num_inversion_steps, *x0.shape)
|
1653 |
+
|
1654 |
+
# intermediate latents
|
1655 |
+
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
|
1656 |
+
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
|
1657 |
+
|
1658 |
+
for t in reversed(timesteps):
|
1659 |
+
idx = num_inversion_steps - t_to_idx[int(t)] - 1
|
1660 |
+
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
|
1661 |
+
xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
|
1662 |
+
xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
|
1663 |
+
|
1664 |
+
# noise maps
|
1665 |
+
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
|
1666 |
+
|
1667 |
+
self.scheduler.set_timesteps(len(self.scheduler.timesteps))
|
1668 |
+
|
1669 |
+
for t in self.progress_bar(timesteps):
|
1670 |
+
idx = num_inversion_steps - t_to_idx[int(t)] - 1
|
1671 |
+
# 1. predict noise residual
|
1672 |
+
xt = xts[idx + 1]
|
1673 |
+
|
1674 |
+
latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt
|
1675 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1676 |
+
|
1677 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1678 |
+
|
1679 |
+
noise_pred = self.unet(
|
1680 |
+
latent_model_input,
|
1681 |
+
t,
|
1682 |
+
encoder_hidden_states=negative_prompt_embeds,
|
1683 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1684 |
+
added_cond_kwargs=added_cond_kwargs,
|
1685 |
+
return_dict=False,
|
1686 |
+
)[0]
|
1687 |
+
|
1688 |
+
# 2. perform guidance
|
1689 |
+
if do_classifier_free_guidance:
|
1690 |
+
noise_pred_out = noise_pred.chunk(2)
|
1691 |
+
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
1692 |
+
noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1693 |
+
|
1694 |
+
xtm1 = xts[idx]
|
1695 |
+
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
|
1696 |
+
zs[idx] = z
|
1697 |
+
|
1698 |
+
# correction to avoid error accumulation
|
1699 |
+
xts[idx] = xtm1_corrected
|
1700 |
+
|
1701 |
+
self.init_latents = xts[-1]
|
1702 |
+
zs = zs.flip(0)
|
1703 |
+
|
1704 |
+
if num_zero_noise_steps > 0:
|
1705 |
+
zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:])
|
1706 |
+
self.zs = zs
|
1707 |
+
#return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
|
1708 |
+
return xts[-1], zs
|
1709 |
+
|
1710 |
+
|
1711 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg
|
1712 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
1713 |
+
"""
|
1714 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
1715 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
1716 |
+
"""
|
1717 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
1718 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
1719 |
+
# rescale the results from guidance (fixes overexposure)
|
1720 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
1721 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
1722 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
1723 |
+
return noise_cfg
|
1724 |
+
|
1725 |
+
|
1726 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim
|
1727 |
+
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
|
1728 |
+
# 1. get previous step value (=t-1)
|
1729 |
+
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
|
1730 |
+
|
1731 |
+
# 2. compute alphas, betas
|
1732 |
+
alpha_prod_t = scheduler.alphas_cumprod[timestep]
|
1733 |
+
alpha_prod_t_prev = (
|
1734 |
+
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
|
1735 |
+
)
|
1736 |
+
|
1737 |
+
beta_prod_t = 1 - alpha_prod_t
|
1738 |
+
|
1739 |
+
# 3. compute predicted original sample from predicted noise also called
|
1740 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
1741 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
1742 |
+
|
1743 |
+
# 4. Clip "predicted x_0"
|
1744 |
+
if scheduler.config.clip_sample:
|
1745 |
+
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
|
1746 |
+
|
1747 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
1748 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
1749 |
+
variance = scheduler._get_variance(timestep, prev_timestep)
|
1750 |
+
std_dev_t = eta * variance ** (0.5)
|
1751 |
+
|
1752 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
1753 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
|
1754 |
+
|
1755 |
+
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
|
1756 |
+
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
1757 |
+
if variance > 0.0:
|
1758 |
+
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
|
1759 |
+
else:
|
1760 |
+
noise = torch.tensor([0.0]).to(latents.device)
|
1761 |
+
|
1762 |
+
return noise, mu_xt + (eta * variance**0.5) * noise
|
1763 |
+
|
1764 |
+
|
1765 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd
|
1766 |
+
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
|
1767 |
+
def first_order_update(model_output, sample): # timestep, prev_timestep, sample):
|
1768 |
+
sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
|
1769 |
+
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
|
1770 |
+
alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
|
1771 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
1772 |
+
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
1773 |
+
|
1774 |
+
h = lambda_t - lambda_s
|
1775 |
+
|
1776 |
+
mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
1777 |
+
|
1778 |
+
mu_xt = scheduler.dpm_solver_first_order_update(
|
1779 |
+
model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
|
1780 |
+
)
|
1781 |
+
|
1782 |
+
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
|
1783 |
+
if sigma > 0.0:
|
1784 |
+
noise = (prev_latents - mu_xt) / sigma
|
1785 |
+
else:
|
1786 |
+
noise = torch.tensor([0.0]).to(sample.device)
|
1787 |
+
|
1788 |
+
prev_sample = mu_xt + sigma * noise
|
1789 |
+
return noise, prev_sample
|
1790 |
+
|
1791 |
+
def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample):
|
1792 |
+
sigma_t, sigma_s0, sigma_s1 = (
|
1793 |
+
scheduler.sigmas[scheduler.step_index + 1],
|
1794 |
+
scheduler.sigmas[scheduler.step_index],
|
1795 |
+
scheduler.sigmas[scheduler.step_index - 1],
|
1796 |
+
)
|
1797 |
+
|
1798 |
+
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
|
1799 |
+
alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
|
1800 |
+
alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)
|
1801 |
+
|
1802 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
1803 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
1804 |
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
1805 |
+
|
1806 |
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
1807 |
+
|
1808 |
+
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
1809 |
+
r0 = h_0 / h
|
1810 |
+
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
1811 |
+
|
1812 |
+
mu_xt = (
|
1813 |
+
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
1814 |
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
1815 |
+
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
1816 |
+
)
|
1817 |
+
|
1818 |
+
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
|
1819 |
+
if sigma > 0.0:
|
1820 |
+
noise = (prev_latents - mu_xt) / sigma
|
1821 |
+
else:
|
1822 |
+
noise = torch.tensor([0.0]).to(sample.device)
|
1823 |
+
|
1824 |
+
prev_sample = mu_xt + sigma * noise
|
1825 |
+
|
1826 |
+
return noise, prev_sample
|
1827 |
+
|
1828 |
+
if scheduler.step_index is None:
|
1829 |
+
scheduler._init_step_index(timestep)
|
1830 |
+
|
1831 |
+
model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
|
1832 |
+
for i in range(scheduler.config.solver_order - 1):
|
1833 |
+
scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
|
1834 |
+
scheduler.model_outputs[-1] = model_output
|
1835 |
+
|
1836 |
+
if scheduler.lower_order_nums < 1:
|
1837 |
+
noise, prev_sample = first_order_update(model_output, latents)
|
1838 |
+
else:
|
1839 |
+
noise, prev_sample = second_order_update(scheduler.model_outputs, latents)
|
1840 |
+
|
1841 |
+
if scheduler.lower_order_nums < scheduler.config.solver_order:
|
1842 |
+
scheduler.lower_order_nums += 1
|
1843 |
+
|
1844 |
+
# upon completion increase step index by one
|
1845 |
+
scheduler._step_index += 1
|
1846 |
+
|
1847 |
+
return noise, prev_sample
|
1848 |
+
|
1849 |
+
|
1850 |
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise
|
1851 |
+
def compute_noise(scheduler, *args):
|
1852 |
+
if isinstance(scheduler, DDIMScheduler):
|
1853 |
+
return compute_noise_ddim(scheduler, *args)
|
1854 |
+
elif (
|
1855 |
+
isinstance(scheduler, DPMSolverMultistepScheduler)
|
1856 |
+
and scheduler.config.algorithm_type == "sde-dpmsolver++"
|
1857 |
+
and scheduler.config.solver_order == 2
|
1858 |
+
):
|
1859 |
+
return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
|
1860 |
+
else:
|
1861 |
+
raise NotImplementedError
|
1862 |
+
|
1863 |
+
|
1864 |
import gradio as gr
|
1865 |
import spaces
|
1866 |
import torch
|
|
|
1870 |
import numpy as np
|
1871 |
import cv2
|
1872 |
from PIL import Image
|
1873 |
+
#from ledits.pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL
|
1874 |
|
1875 |
def HWC3(x):
|
1876 |
assert x.dtype == np.uint8
|
|
|
2025 |
return image
|
2026 |
|
2027 |
@spaces.GPU
|
2028 |
+
def invert_image(image, num_inversion_steps=50, skip=0.3):
|
2029 |
image = image.resize((512,512))
|
2030 |
init_latents,zs = clip_slider_inv.pipe.invert(
|
2031 |
source_prompt = "",
|
|
|
2197 |
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
2198 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
2199 |
|
2200 |
+
image_inv.change(fn=reset_do_inversion, outputs=[do_inversion]).then(fn=invert_image, inputs=[image_inv], outputs=[init_latents,zs])
|
2201 |
submit_inv.click(fn=generate,
|
2202 |
inputs=[slider_x_inv, slider_y_inv, prompt_inv, seed_inv, iterations_inv, steps_inv, guidance_scale_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs],
|
2203 |
outputs=[x_inv, y_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_inv])
|