linoyts HF staff commited on
Commit
814d856
1 Parent(s): 6ae860f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -1669,17 +1669,20 @@ class LEditsPPPipelineStableDiffusionXL(
1669
  t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
1670
  xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
1671
 
 
1672
  for t in reversed(timesteps):
1673
  idx = num_inversion_steps - t_to_idx[int(t)] - 1
1674
  noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
1675
  xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
1676
  xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
1677
-
 
1678
  # noise maps
1679
  zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
1680
 
1681
  self.scheduler.set_timesteps(len(self.scheduler.timesteps))
1682
 
 
1683
  for t in self.progress_bar(timesteps):
1684
  idx = num_inversion_steps - t_to_idx[int(t)] - 1
1685
  # 1. predict noise residual
@@ -1711,6 +1714,7 @@ class LEditsPPPipelineStableDiffusionXL(
1711
 
1712
  # correction to avoid error accumulation
1713
  xts[idx] = xtm1_corrected
 
1714
 
1715
  self.init_latents = xts[-1]
1716
  zs = zs.flip(0)
 
1669
  t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
1670
  xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
1671
 
1672
+ print("pre loop 1")
1673
  for t in reversed(timesteps):
1674
  idx = num_inversion_steps - t_to_idx[int(t)] - 1
1675
  noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
1676
  xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
1677
  xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
1678
+ print("post loop 1")
1679
+
1680
  # noise maps
1681
  zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
1682
 
1683
  self.scheduler.set_timesteps(len(self.scheduler.timesteps))
1684
 
1685
+ print("pre loop 2")
1686
  for t in self.progress_bar(timesteps):
1687
  idx = num_inversion_steps - t_to_idx[int(t)] - 1
1688
  # 1. predict noise residual
 
1714
 
1715
  # correction to avoid error accumulation
1716
  xts[idx] = xtm1_corrected
1717
+ print("post loop 2")
1718
 
1719
  self.init_latents = xts[-1]
1720
  zs = zs.flip(0)