Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -61,11 +61,11 @@ clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.devic
|
|
61 |
|
62 |
|
63 |
@spaces.GPU(duration=120)
|
64 |
-
def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
65 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
66 |
avg_diff_x_1, avg_diff_x_2,
|
67 |
avg_diff_y_1, avg_diff_y_2,
|
68 |
-
img2img_type = None, img = None,
|
69 |
controlnet_scale= None, ip_adapter_scale=None):
|
70 |
|
71 |
start_time = time.time()
|
@@ -93,11 +93,11 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
|
93 |
|
94 |
if img2img_type=="controlnet canny" and img is not None:
|
95 |
control_img = process_controlnet_img(img)
|
96 |
-
image = clip_slider.generate(prompt, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
97 |
elif img2img_type=="ip adapter" and img is not None:
|
98 |
-
image = clip_slider.generate(prompt, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
99 |
else: # text to image
|
100 |
-
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
101 |
|
102 |
end_time = time.time()
|
103 |
print(f"generation time: {end_time - start_time:.2f} ms")
|
@@ -113,7 +113,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
|
113 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
114 |
|
115 |
@spaces.GPU
|
116 |
-
def update_scales(x,y,prompt,seed, steps,
|
117 |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
|
118 |
img2img_type = None, img = None,
|
119 |
controlnet_scale= None, ip_adapter_scale=None):
|
@@ -121,11 +121,11 @@ def update_scales(x,y,prompt,seed, steps,
|
|
121 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
122 |
if img2img_type=="controlnet canny" and img is not None:
|
123 |
control_img = process_controlnet_img(img)
|
124 |
-
image = clip_slider.generate(prompt, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
125 |
elif img2img_type=="ip adapter" and img is not None:
|
126 |
-
image = clip_slider.generate(prompt, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
127 |
else:
|
128 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
129 |
return image
|
130 |
|
131 |
@spaces.GPU
|
|
|
61 |
|
62 |
|
63 |
@spaces.GPU(duration=120)
|
64 |
+
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
|
65 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
66 |
avg_diff_x_1, avg_diff_x_2,
|
67 |
avg_diff_y_1, avg_diff_y_2,
|
68 |
+
img2img_type = None, img = None,
|
69 |
controlnet_scale= None, ip_adapter_scale=None):
|
70 |
|
71 |
start_time = time.time()
|
|
|
93 |
|
94 |
if img2img_type=="controlnet canny" and img is not None:
|
95 |
control_img = process_controlnet_img(img)
|
96 |
+
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
97 |
elif img2img_type=="ip adapter" and img is not None:
|
98 |
+
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
99 |
else: # text to image
|
100 |
+
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
101 |
|
102 |
end_time = time.time()
|
103 |
print(f"generation time: {end_time - start_time:.2f} ms")
|
|
|
113 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
114 |
|
115 |
@spaces.GPU
|
116 |
+
def update_scales(x,y,prompt,seed, steps, guidance_scale,
|
117 |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
|
118 |
img2img_type = None, img = None,
|
119 |
controlnet_scale= None, ip_adapter_scale=None):
|
|
|
121 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
122 |
if img2img_type=="controlnet canny" and img is not None:
|
123 |
control_img = process_controlnet_img(img)
|
124 |
+
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
125 |
elif img2img_type=="ip adapter" and img is not None:
|
126 |
+
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
127 |
else:
|
128 |
+
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
129 |
return image
|
130 |
|
131 |
@spaces.GPU
|