import os import uuid import gradio as gr import spaces from clip_slider_pipeline import CLIPSliderFlux from diffusers import FluxPipeline, AutoencoderTiny import torch import numpy as np import cv2 from PIL import Image from diffusers.utils import load_image from diffusers.utils import export_to_gif import random # load pipelines base_model = "black-forest-labs/FLUX.1-schnell" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") pipe = FluxPipeline.from_pretrained(base_model, vae=taef1, torch_dtype=torch.bfloat16) pipe.transformer.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) # pipe.enable_model_cpu_offload() clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) MAX_SEED = 2**32-1 def save_images_with_unique_filenames(image_list, save_directory): if not os.path.exists(save_directory): os.makedirs(save_directory) paths = [] for image in image_list: unique_filename = f"{uuid.uuid4()}.png" file_path = os.path.join(save_directory, unique_filename) image.save(file_path) paths.append(file_path) return paths def convert_to_centered_scale(num): if num % 2 == 0: # even start = -(num // 2 - 1) end = num // 2 else: # odd start = -(num // 2) end = num // 2 return tuple(range(start, end + 1)) @spaces.GPU(duration=200) def generate(prompt, concept_1, concept_2, scale, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=3, interm_steps=33, guidance_scale=3.5, x_concept_1="", x_concept_2="", avg_diff_x=None, total_images=[], progress=gr.Progress(track_tqdm=True) ): slider_x = [concept_2, concept_1] # check if avg diff for directions need to be re-calculated print("slider_x", slider_x) print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) if randomize_seed: seed = random.randint(0, MAX_SEED) if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) x_concept_1, x_concept_2 = slider_x[0], slider_x[1] images = [] high_scale = scale low_scale = -1 * scale for i in range(interm_steps): cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) image = clip_slider.generate(prompt, width=768, height=768, guidance_scale=guidance_scale, scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) images.append(image) canvas = Image.new('RGB', (256*interm_steps, 256)) for i, im in enumerate(images): canvas.paste(im.resize((256,256)), (256 * i, 0)) comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" scale_total = convert_to_centered_scale(interm_steps) scale_min = scale_total[0] scale_max = scale_total[-1] scale_middle = scale_total.index(0) post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) avg_diff_x = avg_diff.cpu() return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed def update_pre_generated_images(slider_value, total_images): number_images = len(total_images) if(number_images > 0): scale_tuple = convert_to_centered_scale(number_images) return total_images[scale_tuple.index(slider_value)][0] else: return None def reset_recalc_directions(): return True intro = """
code
|