import gradio as gr import spaces import torch from clip_slider_pipeline import CLIPSliderXL from diffusers import StableDiffusionXLPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, EulerDiscreteScheduler, AutoencoderKL import time import numpy as np import cv2 from PIL import Image from ledits.pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def process_controlnet_img(image): controlnet_img = np.array(image) controlnet_img = cv2.Canny(controlnet_img, 100, 200) controlnet_img = HWC3(controlnet_img) controlnet_img = Image.fromarray(controlnet_img) # load pipelines vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda")) pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16) pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config) #pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") # scale = 0.8 # pipe_adapter.set_ip_adapter_scale(scale) clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda")) controlnet = ControlNetModel.from_pretrained( "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet torch_dtype=torch.float16 ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained( "sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch.float16, ) clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.device("cuda")) pipe_inv = LEditsPPPipelineStableDiffusionXL.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16 ) clip_slider_inv = CLIPSliderXL(sd_pipe=pipe_inv,device=torch.device("cuda")) @spaces.GPU(duration=120) def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type = None, img = None, controlnet_scale= None, ip_adapter_scale=None, edit_threshold=None, edit_guidance_scale = None, init_latents=None, zs=None): start_time = time.time() # check if avg diff for directions need to be re-calculated print("slider_x", slider_x) print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]): avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) avg_diff_0 = avg_diff[0].to(torch.float16) avg_diff_1 = avg_diff[1].to(torch.float16) x_concept_1, x_concept_2 = slider_x[0], slider_x[1] print("avg_diff_0", avg_diff_0.dtype) if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]): avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations) avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16) avg_diff_2nd_1 = avg_diff_2nd[1].to(torch.float16) y_concept_1, y_concept_2 = slider_y[0], slider_y[1] end_time = time.time() print(f"direction time: {end_time - start_time:.2f} ms") start_time = time.time() if img2img_type=="controlnet canny" and img is not None: control_img = process_controlnet_img(img) image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) elif img2img_type=="ip adapter" and img is not None: image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) elif img2img_type=="inversion": image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), init_latents = init_latents, zs=zs, edit_threshold=edit_threshold, edit_guidance_scale = edit_guidance_scale) else: # text to image image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) end_time = time.time() print(f"generation time: {end_time - start_time:.2f} ms") comma_concepts_x = ', '.join(slider_x) comma_concepts_y = ', '.join(slider_y) avg_diff_x_1 = avg_diff_0.cpu() avg_diff_x_2 = avg_diff_1.cpu() avg_diff_y_1 = avg_diff_2nd_0.cpu() avg_diff_y_2 = avg_diff_2nd_1.cpu() return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image @spaces.GPU def update_scales(x,y,prompt,seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type = None, img = None, controlnet_scale= None, ip_adapter_scale=None, edit_threshold=None, edit_guidance_scale = None, init_latents=None, zs=None): avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) if img2img_type=="controlnet canny" and img is not None: control_img = process_controlnet_img(img) image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) elif img2img_type=="ip adapter" and img is not None: image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) elif img2img_type=="inversion": image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), edit_threshold=edit_threshold, edit_guidance_scale = edit_guidance_scale, init_latents = init_latents, zs=zs) else: image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) return image @spaces.GPU def update_x(x,y,prompt,seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type = None, img = None): avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) return image @spaces.GPU def update_y(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type = None, img = None): avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) return image @spaces.GPU def invert(image, num_inversion_steps=50, skip=0.3): init_latents,zs = clip_slider_inv.pipe.invert( source_prompt = "", image = image, num_inversion_steps = num_inversion_steps, skip = skip ) return init_latents,zs def reset_do_inversion(): return True css = ''' #group { position: relative; width: 420px; height: 420px; margin-bottom: 20px; background-color: white } #x { position: absolute; bottom: 0; left: 25px; width: 400px; } #y { position: absolute; bottom: 20px; left: 67px; width: 400px; transform: rotate(-90deg); transform-origin: left bottom; } #image_out{position:absolute; width: 80%; right: 10px; top: 40px} ''' with gr.Blocks(css=css) as demo: x_concept_1 = gr.State("") x_concept_2 = gr.State("") y_concept_1 = gr.State("") y_concept_2 = gr.State("") avg_diff_x_1 = gr.State() avg_diff_x_2 = gr.State() avg_diff_y_1 = gr.State() avg_diff_y_2 = gr.State() do_inversion = gr.State() init_latents = gr.State() zs = gr.State() with gr.Tab("text2image"): with gr.Row(): with gr.Column(): slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) prompt = gr.Textbox(label="Prompt") submit = gr.Button("find directions") with gr.Column(): with gr.Group(elem_id="group"): x = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="x", interactive=False) y = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="y", interactive=False) output_image = gr.Image(elem_id="image_out") with gr.Row(): generate_butt = gr.Button("generate") with gr.Accordion(label="advanced options", open=False): iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400) steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=5, ) seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) with gr.Tab(label="image2image"): with gr.Row(): with gr.Column(): image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="") prompt_a = gr.Textbox(label="Prompt") submit_a = gr.Button("Submit") with gr.Column(): with gr.Group(elem_id="group"): x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) output_image_a = gr.Image(elem_id="image_out") with gr.Row(): generate_butt_a = gr.Button("generate") with gr.Accordion(label="advanced options", open=False): iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) guidance_scale_a = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=5, ) controlnet_conditioning_scale = gr.Slider( label="controlnet conditioning scale", minimum=0.5, maximum=5.0, step=0.1, value=0.7, ) ip_adapter_scale = gr.Slider( label="ip adapter scale", minimum=0.5, maximum=5.0, step=0.1, value=0.8, ) seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) with gr.Tab(label="inversion"): with gr.Row(): with gr.Column(): image_inv = gr.Image(height=512, width=512) slider_x_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) slider_y_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) prompt_inv = gr.Textbox(label="Prompt") img2img_type_inv = gr.Radio(["inversion"], label="",value="inversion", info="", visible=False) submit_inv = gr.Button("Submit") with gr.Column(): with gr.Group(elem_id="group"): x_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) y_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) output_image_inv = gr.Image(elem_id="image_out") with gr.Row(): generate_butt_inv = gr.Button("generate") with gr.Accordion(label="advanced options", open=False): iterations_inv = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) steps_inv = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) guidance_scale_inv = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=5, ) # edit_threshold=None, edit_guidance_scale = None, # init_latents=None, zs=None edit_threshold = gr.Slider( label="edit threshold", minimum=0.01, maximum=0.99, step=0.1, value=0.3, ) edit_guidance_scale = gr.Slider( label="edit guidance scale", minimum=0, maximum=20, step=0.25, value=5, ) seed_inv = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) submit.click(fn=generate, inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image]) image_inv.change(fn=reset_do_inversion, outputs=[do_inversion]).then(fn=invert, inputs=[image_inv], outputs=[init_latents,zs]) submit_inv.click(fn=generate, inputs=[slider_x_inv, slider_y_inv, prompt_inv, seed_inv, iterations_inv, steps_inv, guidance_scale_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], outputs=[x_inv, y_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_inv]) generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) generate_butt_inv.click(fn=update_scales, inputs=[x_inv,y_inv, prompt_inv, seed_inv, steps_inv, guidance_scale_inv, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], outputs=[output_image_inv]) #x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) #y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) submit_a.click(fn=generate, inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a]) #x_a.change(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) #y_a.change(fn=update_scales, inputs=[x_a,y_a, prompt, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) if __name__ == "__main__": demo.launch()