pragnakalp's picture
Update app.py
07e246b verified
raw
history blame
3.66 kB
import gradio as gr
import tensorflow as tf
import keras_ocr
import requests
import cv2
import os
import csv
import numpy as np
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
import scipy.ndimage.interpolation as inter
import easyocr
import datasets
from datasets import load_dataset, Image
from PIL import Image
from paddleocr import PaddleOCR
from save_data import flag
import spaces
import pytesseract
from PIL import Image
# gpus = tf.config.experimental.list_physical_devices('GPU')
# if gpus:
# try:
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
# except RuntimeError as e:
# print(e)
"""
Paddle OCR
"""
@spaces.GPU
def ocr_with_paddle(img):
finaltext = ''
ocr = PaddleOCR(use_gpu=True,lang='en',use_angle_cls=True)
# img_path = 'exp.jpeg'
result = ocr.ocr(img)
for i in range(len(result[0])):
text = result[0][i][1][0]
finaltext += ' '+ text
return finaltext
"""
Keras OCR
"""
def ocr_with_keras(img):
output_text = ''
pipeline=keras_ocr.pipeline.Pipeline()
images=[keras_ocr.tools.read(img)]
predictions=pipeline.recognize(images)
first=predictions[0]
for text,box in first:
output_text += ' '+ text
return output_text
"""
easy OCR
"""
# gray scale image
def get_grayscale(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Thresholding or Binarization
def thresholding(src):
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
@spaces.GPU
def ocr_with_easy(img):
gray_scale_image=get_grayscale(img)
thresholding(gray_scale_image)
cv2.imwrite('image.png',gray_scale_image)
reader = easyocr.Reader(['th','en'])
bounds = reader.readtext('image.png',paragraph="False",detail = 0)
bounds = ''.join(bounds)
return bounds
"""
Generate OCR
"""
def generate_ocr(Method,img):
text_output = ''
print("\n\n img :",img.any())
print("\n\n img.any :",(img).any())
if img.any() or (img).any():
add_csv = []
image_id = 1
print("Method___________________",Method)
if Method == 'EasyOCR':
text_output = ocr_with_easy(img)
if Method == 'KerasOCR':
text_output = ocr_with_keras(img)
if Method == 'PaddleOCR':
text_output = ocr_with_paddle(img)
try:
flag(Method,text_output,img)
except Exception as e:
print(e)
return text_output
else:
raise gr.Error("Please upload an image!!!!")
# except Exception as e:
# print("Error in ocr generation ==>",e)
# text_output = "Something went wrong"
# return text_output
"""
Create user interface for OCR demo
"""
# image = gr.Image(shape=(300, 300))
image = gr.Image()
method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR")
output = gr.Textbox(label="Output")
demo = gr.Interface(
generate_ocr,
[method,image],
output,
title="Optical Character Recognition",
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
article = """<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at
<a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a>
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>"""
)
# demo.launch(enable_queue = False)
demo.launch()