Spaces:
Sleeping
Sleeping
import gradio as gr | |
def greet(name): | |
return "Hello " + name + "!!" | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() | |
from sklearn.datasets import make_circles | |
from sklearn.model_selection import train_test_split | |
X, y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) | |
from sklearn.decomposition import PCA, KernelPCA | |
pca = PCA(n_components=2) | |
kernel_pca = KernelPCA( | |
n_components=None, kernel="rbf", gamma=10, fit_inverse_transform=True, alpha=0.1 | |
) | |
X_test_pca = pca.fit(X_train).transform(X_test) | |
X_test_kernel_pca = kernel_pca.fit(X_train).transform(X_test) | |
fig, (orig_data_ax, pca_proj_ax, kernel_pca_proj_ax) = plt.subplots( | |
ncols=3, figsize=(14, 4) | |
) | |
orig_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test) | |
orig_data_ax.set_ylabel("Feature #1") | |
orig_data_ax.set_xlabel("Feature #0") | |
orig_data_ax.set_title("Testing data") | |
pca_proj_ax.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test) | |
pca_proj_ax.set_ylabel("Principal component #1") | |
pca_proj_ax.set_xlabel("Principal component #0") | |
pca_proj_ax.set_title("Projection of testing data\n using PCA") | |
kernel_pca_proj_ax.scatter(X_test_kernel_pca[:, 0], X_test_kernel_pca[:, 1], c=y_test) | |
kernel_pca_proj_ax.set_ylabel("Principal component #1") | |
kernel_pca_proj_ax.set_xlabel("Principal component #0") | |
_ = kernel_pca_proj_ax.set_title("Projection of testing data\n using KernelPCA") |