import gradio as gr def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() from sklearn.datasets import make_circles from sklearn.model_selection import train_test_split X, y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) from sklearn.decomposition import PCA, KernelPCA pca = PCA(n_components=2) kernel_pca = KernelPCA( n_components=None, kernel="rbf", gamma=10, fit_inverse_transform=True, alpha=0.1 ) X_test_pca = pca.fit(X_train).transform(X_test) X_test_kernel_pca = kernel_pca.fit(X_train).transform(X_test) fig, (orig_data_ax, pca_proj_ax, kernel_pca_proj_ax) = plt.subplots( ncols=3, figsize=(14, 4) ) orig_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test) orig_data_ax.set_ylabel("Feature #1") orig_data_ax.set_xlabel("Feature #0") orig_data_ax.set_title("Testing data") pca_proj_ax.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test) pca_proj_ax.set_ylabel("Principal component #1") pca_proj_ax.set_xlabel("Principal component #0") pca_proj_ax.set_title("Projection of testing data\n using PCA") kernel_pca_proj_ax.scatter(X_test_kernel_pca[:, 0], X_test_kernel_pca[:, 1], c=y_test) kernel_pca_proj_ax.set_ylabel("Principal component #1") kernel_pca_proj_ax.set_xlabel("Principal component #0") _ = kernel_pca_proj_ax.set_title("Projection of testing data\n using KernelPCA")