Spaces:
Sleeping
Sleeping
File size: 8,261 Bytes
98322fb 8c046c6 98322fb 96a862d 5f7150e 98322fb 6eb8bc3 11c4ca1 365e727 11c4ca1 98322fb de5fa74 98322fb f9a9c3c 4f3b924 98322fb 55d75d7 478c67d dc908ae 4f3b924 98322fb ddaa35b 98322fb f872b37 98322fb 5164e6e 98322fb 6eb8bc3 98322fb 2d27002 84aac8a b5da494 1e561c3 98322fb a3c3ebf 98322fb 9274913 98322fb 015e494 98322fb 015e494 5164e6e 94b2733 77282db f26caf9 77282db 5164e6e ade53d7 55f0286 94b2733 1ae7e57 4f3b924 039454e 5f5c0dd ade53d7 a98ece3 ade53d7 09be82c cd6961d 98322fb 9234bc4 758df81 ade53d7 ed65a98 b9c7410 9966fac 98322fb 9f0d446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import sys
import pdb
import random
import numpy as np
from PIL import Image, ImageOps
import base64
from io import BytesIO
import torch
from torchvision import transforms
import torchvision.transforms.functional as TF
import gradio as gr
from src.model import make_1step_sched
from src.pix2pix_turbo import Pix2Pix_Turbo
model = Pix2Pix_Turbo("sketch_to_image_stochastic")
ITEMS_NAMES = [ "π‘ Lamp","π Bag","ποΈ Sofa","πͺ Chair","ποΈ Car","ποΈ Motorbike"]
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_ITEM_NAME = "π‘ Lamp"
def empty_input_image():
return { 'background': Image.new("L", (512, 512), 255),
'layers': [Image.new("L", (512, 512), 255),Image.new("L", (512, 512), 255)],
'composite': Image.new("L", (512, 512), 255)}
def pil_image_to_data_uri(img, format='PNG'):
buffered = BytesIO()
img.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/{format.lower()};base64,{img_str}"
def run(image, item_name):
print("sketch updated")
print(image)
if image["composite"] is None:
ones = Image.new("L", (512, 512), 255)
return ones
print(item_name.split()[1])
prompt = item_name.split()[1] + " professional 3d model. octane render, highly detailed, volumetric, dramatic lighting"
inverted_image = ImageOps.invert(image["composite"])
converted_image = inverted_image.convert("RGB")
image_t = TF.to_tensor(converted_image) > 0.5
with torch.no_grad():
c_t = image_t.unsqueeze(0).cuda().float()
torch.manual_seed(42)
B,C,H,W = c_t.shape
noise = torch.randn((1,4,H//8, W//8), device=c_t.device)
output_image = model(c_t, prompt, deterministic=False, r=0.4, noise_map=noise)
output_pil = TF.to_pil_image(output_image[0].cpu()*0.5+0.5)
return output_pil
def update_canvas(use_line, use_eraser):
if use_eraser:
_color = "#ffffff"
brush_size = 20
if use_line:
_color = "#000000"
brush_size = 4
return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True)
def upload_sketch(file):
_img = Image.open(file.name)
_img = _img.convert("L")
return gr.update(value=_img, source="upload", interactive=True)
scripts = """
async () => {
globalThis.theSketchDownloadFunction = () => {
console.log("test")
var link = document.createElement("a");
dataUri = document.getElementById('download_sketch').href
link.setAttribute("href", dataUri)
link.setAttribute("download", "sketch.png")
document.body.appendChild(link); // Required for Firefox
link.click();
document.body.removeChild(link); // Clean up
// also call the output download function
theOutputDownloadFunction();
return false
}
globalThis.theOutputDownloadFunction = () => {
console.log("test output download function")
var link = document.createElement("a");
dataUri = document.getElementById('download_output').href
link.setAttribute("href", dataUri);
link.setAttribute("download", "output.png");
document.body.appendChild(link); // Required for Firefox
link.click();
document.body.removeChild(link); // Clean up
return false
}
globalThis.DELETE_SKETCH_FUNCTION = () => {
console.log("delete sketch function")
var button_del = document.querySelector('#input_image > div.image-container.svelte-1sbaaot > div.controls-wrap.svelte-4lttvb > div > button:nth-child(3)');
// Create a new 'click' event
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
button_del.dispatchEvent(event);
}
globalThis.togglePencil = () => {
el_pencil = document.getElementById('my-toggle-pencil');
el_pencil.classList.toggle('clicked');
// simulate a click on the gradio button
btn_gradio = document.querySelector("#cb-line > label > input");
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
btn_gradio.dispatchEvent(event);
if (el_pencil.classList.contains('clicked')) {
document.getElementById('my-toggle-eraser').classList.remove('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
document.getElementById('my-div-eraser').style.backgroundColor = "white";
}
else {
document.getElementById('my-toggle-eraser').classList.add('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "white";
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
}
}
globalThis.toggleEraser = () => {
element = document.getElementById('my-toggle-eraser');
element.classList.toggle('clicked');
// simulate a click on the gradio button
btn_gradio = document.querySelector("#cb-eraser > label > input");
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
btn_gradio.dispatchEvent(event);
if (element.classList.contains('clicked')) {
document.getElementById('my-toggle-pencil').classList.remove('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "white";
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
}
else {
document.getElementById('my-toggle-pencil').classList.add('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
document.getElementById('my-div-eraser').style.backgroundColor = "white";
}
}
}
"""
head="""<meta name="theme-color" content="#000"><link href="https://fonts.cdnfonts.com/css/pp-neue-montreal" rel="stylesheet">"""
with gr.Blocks(css="style.css") as demo:
gr.HTML("""<div id="header_block">
<h1>Dai forma al nuovo<br />design Made in Italy</h1>
<div id="logos_block">
<img id="logos_row" src="file=assets/logos.png" alt="logo" />
<div id="text_row">
<span>krnl.ai</span><span>//</span
><span>eccellenza-italiana.com</span>
</div>
</div>
</div>""")
with gr.Column(elem_id="main_block"):
with gr.Row(elem_id="board_row"):
with gr.Group(elem_id="input_image_container", elem_classes="image_container" ):
image = gr.Sketchpad(type="pil", image_mode="L",container=False, height="100%", width="100%", value = empty_input_image,
brush = gr.Brush(default_size="2", colors=["#000000"], color_mode="fixed"), layers = False,
# invert_colors=True, shape=(512, 512), brush_radius=4,
interactive=True, show_download_button=True, elem_id="input_image", show_label=False)
gr.HTML("""<img src="file=assets/drawCta.png" id="draw_cta" alt="draw here image" />""",elem_id="draw_cta_container")
gr.HTML("""<button id="eraser" onclick="return DELETE_SKETCH_FUNCTION(this)">
<span id="eraser_icon"></span>
</button>""",elem_id="eraser_container")
with gr.Group(elem_id="output_image_container", elem_classes="image_container"):
result = gr.Image(label="Result", height="100%", width="100%", elem_id="output_image", show_label=False, show_download_button=True,container=False,)
with gr.Row(elem_id="radio_row"):
item = gr.Radio(choices=ITEMS_NAMES, value=DEFAULT_ITEM_NAME, show_label=False, container=False)
demo.load(None,None,None,js=scripts)
inputs = [image, item]
outputs = [result]
item.change(fn=run, inputs=inputs, outputs=outputs)
image.change(fn=run, inputs=inputs, outputs=outputs, trigger_mode="always_last")
image.clear(fn=empty_input_image, outputs=image)
if __name__ == "__main__":
demo.queue().launch(debug=True, allowed_paths=["."])
|