import os import sys import pdb import random import numpy as np from PIL import Image, ImageOps, ImageChops import base64 from io import BytesIO import torch from torchvision import transforms import torchvision.transforms.functional as TF import gradio as gr from src.model import make_1step_sched from src.pix2pix_turbo import Pix2Pix_Turbo model = Pix2Pix_Turbo("sketch_to_image_stochastic") ITEMS_NAMES = [ "💡 Lamp","👜 Bag","🛋️ Sofa","🪑 Chair","🏎️ Car","🏍️ Motorbike"] MAX_SEED = np.iinfo(np.int32).max DEFAULT_ITEM_NAME = "💡 Lamp" def empty_input_image(): return { 'background': Image.new("L", (512, 512), 255), 'layers': [Image.new("L", (512, 512), 255),Image.new("L", (512, 512), 255)], 'composite': Image.new("L", (512, 512), 255)} def pil_image_to_data_uri(img, format='PNG'): buffered = BytesIO() img.save(buffered, format=format) img_str = base64.b64encode(buffered.getvalue()).decode() return f"data:image/{format.lower()};base64,{img_str}" def run(image, item_name): print("sketch updated") print(image) empty_image = Image.new("L", (512, 512), 255) diff = ImageChops.difference(image["composite"], empty_image) # if image["composite"] is None: if not diff.getbbox(): ones = empty_image return ones print(item_name.split()[1]) prompt = item_name.split()[1] + " professional 3d model. octane render, highly detailed, volumetric, dramatic lighting" inverted_image = ImageOps.invert(image["composite"]) converted_image = inverted_image.convert("RGB") image_t = TF.to_tensor(converted_image) > 0.5 with torch.no_grad(): c_t = image_t.unsqueeze(0).cuda().float() torch.manual_seed(42) B,C,H,W = c_t.shape noise = torch.randn((1,4,H//8, W//8), device=c_t.device) output_image = model(c_t, prompt, deterministic=False, r=0.4, noise_map=noise) output_pil = TF.to_pil_image(output_image[0].cpu()*0.5+0.5) return output_pil def update_canvas(use_line, use_eraser): if use_eraser: _color = "#ffffff" brush_size = 20 if use_line: _color = "#000000" brush_size = 4 return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True) def upload_sketch(file): _img = Image.open(file.name) _img = _img.convert("L") return gr.update(value=_img, source="upload", interactive=True) scripts = """ async () => { globalThis.theSketchDownloadFunction = () => { console.log("test") var link = document.createElement("a"); dataUri = document.getElementById('download_sketch').href link.setAttribute("href", dataUri) link.setAttribute("download", "sketch.png") document.body.appendChild(link); // Required for Firefox link.click(); document.body.removeChild(link); // Clean up // also call the output download function theOutputDownloadFunction(); return false } globalThis.theOutputDownloadFunction = () => { console.log("test output download function") var link = document.createElement("a"); dataUri = document.getElementById('download_output').href link.setAttribute("href", dataUri); link.setAttribute("download", "output.png"); document.body.appendChild(link); // Required for Firefox link.click(); document.body.removeChild(link); // Clean up return false } globalThis.DELETE_SKETCH_FUNCTION = () => { console.log("delete sketch function") var button_del = document.querySelector('#input_image > div.image-container.svelte-1sbaaot > div.controls-wrap.svelte-4lttvb > div > button:nth-child(3)'); // Create a new 'click' event var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); button_del.dispatchEvent(event); } globalThis.togglePencil = () => { el_pencil = document.getElementById('my-toggle-pencil'); el_pencil.classList.toggle('clicked'); // simulate a click on the gradio button btn_gradio = document.querySelector("#cb-line > label > input"); var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); btn_gradio.dispatchEvent(event); if (el_pencil.classList.contains('clicked')) { document.getElementById('my-toggle-eraser').classList.remove('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "gray"; document.getElementById('my-div-eraser').style.backgroundColor = "white"; } else { document.getElementById('my-toggle-eraser').classList.add('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "white"; document.getElementById('my-div-eraser').style.backgroundColor = "gray"; } } globalThis.toggleEraser = () => { element = document.getElementById('my-toggle-eraser'); element.classList.toggle('clicked'); // simulate a click on the gradio button btn_gradio = document.querySelector("#cb-eraser > label > input"); var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); btn_gradio.dispatchEvent(event); if (element.classList.contains('clicked')) { document.getElementById('my-toggle-pencil').classList.remove('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "white"; document.getElementById('my-div-eraser').style.backgroundColor = "gray"; } else { document.getElementById('my-toggle-pencil').classList.add('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "gray"; document.getElementById('my-div-eraser').style.backgroundColor = "white"; } } } """ head="""""" with gr.Blocks(css="style.css", head = head) as demo: gr.HTML("""