File size: 16,256 Bytes
8ef7527 00f3071 8ef7527 111cd9a 8ef7527 111cd9a 7e755f9 8ef7527 1f114ec 79c0022 8ef7527 ee654a6 8ef7527 3b818f5 1f114ec b54caac 1f114ec 3b818f5 8ef7527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import numpy as np
import pandas as pd
import re
import os
import cloudpickle
from transformers import (DebertaTokenizerFast,
TFAutoModelForTokenClassification,
BartTokenizerFast,
TFAutoModelForSeq2SeqLM)
import tensorflow as tf
import spacy
import streamlit as st
from scraper import scrape_text
os.environ['TF_USE_LEGACY_KERAS'] = "1"
class NERLabelEncoder:
'''
Label Encoder to encode and decode the entity labels
'''
def __init__(self):
self.label_mapping = {'O': 0,
'B-geo': 1,
'I-geo': 2,
'B-gpe': 3,
'I-gpe': 4,
'B-per': 5,
'I-per': 6,
'B-org': 7,
'I-org': 8,
'B-tim': 9,
'I-tim': 10,
'B-art': 11,
'I-art': 12,
'B-nat': 13,
'I-nat': 14,
'B-eve': 15,
'I-eve': 16,
'[CLS]': -100,
'[SEP]': -100}
self.inverse_label_mapping = {}
def fit(self):
self.inverse_label_mapping = {value: key for key, value in self.label_mapping.items()}
return self
def transform(self, x: pd.Series):
x = x.map(self.label_mapping)
return x
def inverse_transform(self, x: pd.Series):
x = x.map(self.inverse_label_mapping)
return x
############ NER MODEL & VARS INITIALIZATION START ####################
NER_CHECKPOINT = "microsoft/deberta-base"
NER_N_TOKENS = 50
NER_N_LABELS = 18
NER_COLOR_MAP = {'GEO': '#DFFF00', 'GPE': '#FFBF00', 'PER': '#9FE2BF',
'ORG': '#40E0D0', 'TIM': '#CCCCFF', 'ART': '#FFC0CB', 'NAT': '#FFE4B5', 'EVE': '#DCDCDC'}
@st.cache_resource
def load_ner_models():
ner_model = TFAutoModelForTokenClassification.from_pretrained(NER_CHECKPOINT, num_labels=NER_N_LABELS, attention_probs_dropout_prob=0.4, hidden_dropout_prob=0.4)
ner_model.load_weights(os.path.join("models", "general_ner_deberta_weights.h5"), by_name=True)
ner_label_encoder = NERLabelEncoder()
ner_label_encoder.fit()
ner_tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True)
nlp = spacy.load(os.path.join('.', 'en_core_web_sm-3.6.0'))
print('Loaded NER models')
return ner_model, ner_label_encoder, ner_tokenizer, nlp
ner_model, ner_label_encoder, ner_tokenizer, nlp = load_ner_models()
############ NER MODEL & VARS INITIALIZATION END ####################
############ NER LOGIC START ####################
def softmax(x):
return tf.exp(x) / tf.math.reduce_sum(tf.exp(x))
def ner_process_output(res):
'''
Function to concatenate sub-word tokens, labels and
compute mean prediction probability of tokens
'''
d = {}
result = []
pred_prob = []
res.append(['-', 'B-b', 0])
for n, i in enumerate(res):
try:
split = i[1].split('-')
token = i[0]
token_prob = i[2]
prefix, suffix = split
if prefix == 'B':
if len(d) != 0:
result.append([(re.sub(r"[^\x00-\x7F]+", '', token.replace("Δ ", " ").strip()), label, np.mean(pred_prob))
for label, token in d.items()][0])
d = {}
pred_prob = []
pred_prob.append(token_prob)
d[suffix] = token
else:
d[suffix] = d[suffix] + token
pred_prob.append(token_prob)
except:
continue
return result
def ner_inference(txt):
'''
Function that returns model prediction and prediction probabitliy
'''
test_data = [txt]
# tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True)
tokens = ner_tokenizer.tokenize(txt)
tokenized_data = ner_tokenizer(test_data, is_split_into_words=True, max_length=NER_N_TOKENS,
truncation=True, padding="max_length")
token_idx_to_consider = tokenized_data.word_ids()
token_idx_to_consider = [i for i in range(len(token_idx_to_consider)) if token_idx_to_consider[i] is not None]
input_ = [tokenized_data['input_ids'], tokenized_data['attention_mask']]
pred_logits = ner_model.predict(input_, verbose=0).logits[0]
pred_prob = tf.map_fn(softmax, pred_logits)
pred_idx = tf.argmax(pred_prob, axis=-1).numpy()
pred_idx = pred_idx[token_idx_to_consider]
pred_prob = tf.math.reduce_max(pred_prob, axis=-1).numpy()
pred_prob = np.round(pred_prob[token_idx_to_consider], 3)
pred_labels = ner_label_encoder.inverse_transform(pd.Series(pred_idx))
result = [[token, label, prob] for token, label,
prob in zip(tokens, pred_labels, pred_prob) if label.find('-') >= 0]
output = ner_process_output(result)
return output
def ner_inference_long_text(txt):
entities = []
doc = nlp(txt)
n_sents = len([_ for _ in doc.sents])
n = 0
progress_bar = st.progress(0, text=f'Processed 0 / {n_sents} sentences')
for sent in doc.sents:
entities.extend(ner_inference(sent.text))
n += 1
progress_bar.progress(n / n_sents, text=f'Processed {n} / {n_sents} sentences')
# progress_bar.empty()
return entities
def get_ner_text(article_txt, ner_result):
res_txt = ''
start = 0
prev_start = 0
for i in ner_result:
try:
span = next(re.finditer(fr'{i[0]}', article_txt)).span()
start = span[0]
end = span[1]
res_txt += article_txt[prev_start:start]
repl_str = f'''<span style="background-color:{NER_COLOR_MAP[i[1]]}; border-radius: 3px">{article_txt[start:end].strip()}
<span style="font-size:10px; font-weight:bold; display:inline-block; vertical-align: middle;">
{i[1]} ({str(np.round(i[2], 3))})</span></span>'''
res_txt += article_txt[start:end].replace(article_txt[start:end], repl_str)
prev_start = 0
article_txt = article_txt[end:]
except:
continue
res_txt += article_txt
return res_txt
############ NER LOGIC END ####################
############ SUMMARIZATION MODEL & VARS INITIALIZATION START ####################
SUMM_CHECKPOINT = "facebook/bart-base"
SUMM_INPUT_N_TOKENS = 400
SUMM_TARGET_N_TOKENS = 300
@st.cache_resource
def load_summarizer_models():
summ_tokenizer = BartTokenizerFast.from_pretrained(SUMM_CHECKPOINT)
summ_model = TFAutoModelForSeq2SeqLM.from_pretrained(SUMM_CHECKPOINT)
summ_model.load_weights(os.path.join("models", "bart_en_summarizer.h5"), by_name=True)
print('Loaded summarizer models')
return summ_tokenizer, summ_model
summ_tokenizer, summ_model = load_summarizer_models()
def summ_preprocess(txt):
txt = re.sub(r'^By \. [\w\s]+ \. ', ' ', txt) # By . Ellie Zolfagharifard .
txt = re.sub(r'\d{1,2}\:\d\d [a-zA-Z]{3}', ' ', txt) # 10:30 EST
txt = re.sub(r'\d{1,2} [a-zA-Z]+ \d{4}', ' ', txt) # 10 November 1990
txt = txt.replace('PUBLISHED:', ' ')
txt = txt.replace('UPDATED', ' ')
txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after
txt = txt.replace(' : ', ' ')
txt = txt.replace('(CNN)', ' ')
txt = txt.replace('--', ' ')
txt = re.sub(r'^\s*[\,\.\:\'\;\|]', ' ', txt) # remove puncts at beginning of sent
txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after
txt = re.sub(r'\n+',' ', txt)
txt = " ".join(txt.split())
return txt
def summ_inference_tokenize(input_: list, n_tokens: int):
tokenized_data = summ_tokenizer(text=input_, max_length=SUMM_TARGET_N_TOKENS, truncation=True, padding="max_length", return_tensors="tf")
return summ_tokenizer, tokenized_data
def clean_summary(summary: str):
summary = summary.strip()
if summary[-1] != '.':
sents = summary.split(". ")
summary = ". ".join(sents[:-1])
summary += "."
summary = re.sub(r'^-', "", summary)
summary = summary.strip()
if len(summary) <= 5:
summary = ""
return summary
def summ_inference(txt: str):
txt = summ_preprocess(txt)
inference_tokenizer, tokenized_data = summ_inference_tokenize(input_=[txt], n_tokens=SUMM_INPUT_N_TOKENS)
pred = summ_model.generate(**tokenized_data, max_new_tokens=SUMM_TARGET_N_TOKENS)
result = "" if txt=="" else clean_summary(inference_tokenizer.decode(pred[0], skip_special_tokens=True))
return result
############ SUMMARIZATION MODEL & VARS INITIALIZATION END ####################
############## ENTRY POINT START #######################
def main():
st.markdown('''<h3>News Summarizer and NER</h3>
<p><a href="https://huggingface.co/spaces/ksvmuralidhar/news_summarizer_ner/blob/main/README.md#new-summarization-and-ner" target="_blank">README</a>
<br>
The app works best in summarizing <a href="https://edition.cnn.com/" target="_blank">CNN</a> and
<a href="https://www.dailymail.co.uk/home/index.html" target="_blank">Daily Mail</a> news articles,
as the BART model is fine-tuned on them.
</p>
''', unsafe_allow_html=True)
input_type = st.radio('Select an option:', ['Paste news URL', 'Paste news text'],
horizontal=True)
scrape_error = None
summary_error = None
ner_error = None
summ_result = None
ner_result = None
ner_df = None
article_txt = None
if input_type == 'Paste news URL':
article_url = st.text_input("Paste the URL of a news article", "")
if (st.button("Submit")) or (article_url):
with st.status("Processing...", expanded=True) as status:
status.empty()
# Scraping data Start
try:
st.info("Scraping data from the URL.", icon="βΉοΈ")
article_txt = scrape_text(article_url)
st.success("Successfully scraped the data.", icon="β
")
except Exception as e:
article_txt = None
scrape_error = str(e)
# Scraping data End
if article_txt is not None:
article_txt = re.sub(r'\n+',' ', article_txt)
# Generating summary start
try:
st.info("Generating the summary.", icon="βΉοΈ")
summ_result = summ_inference(article_txt)
except Exception as e:
summ_result = None
summary_error = str(e)
if summ_result is not None:
st.success("Successfully generated the summary.", icon="β
")
else:
st.error("Encountered an error while generating the summary.", icon="π¨")
# Generating summary end
# NER start
try:
st.info("Recognizing the entites.", icon="βΉοΈ")
ner_result = [[ent, label.upper(), np.round(prob, 3)]
for ent, label, prob in ner_inference_long_text(article_txt)]
ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence'])
ner_result = get_ner_text(article_txt, ner_result).replace('$', '\$')
except Exception as e:
ner_result = None
ner_error = str(e)
if ner_result is not None:
st.success("Successfully recognized the entites.", icon="β
")
else:
st.error("Encountered an error while recognizing the entites.", icon="π¨")
# NER end
else:
st.error("Encountered an error while scraping the data.", icon="π¨")
if (scrape_error is None) and (summary_error is None) and (ner_error is None):
status.update(label="Done", state="complete", expanded=False)
else:
status.update(label="Error", state="error", expanded=False)
if scrape_error is not None:
st.error(f"Scrape Error: \n{scrape_error}", icon="π¨")
else:
if summary_error is not None:
st.error(f"Summary Error: \n{summary_error}", icon="π¨")
else:
st.markdown(f"<h4>SUMMARY:</h4>{summ_result}", unsafe_allow_html=True)
if ner_error is not None:
st.error(f"NER Error \n{ner_error}", icon="π¨")
else:
st.markdown(f"<h4>ENTITIES:</h4>{ner_result}", unsafe_allow_html=True)
# st.dataframe(ner_df, use_container_width=True)
st.markdown(f"<h4>SCRAPED TEXT:</h4>{article_txt}", unsafe_allow_html=True)
else:
article_txt = st.text_area("Paste the text of a news article", "", height=150)
if (st.button("Submit")) or (article_txt):
with st.status("Processing...", expanded=True) as status:
article_txt = re.sub(r'\n+',' ', article_txt)
# Generating summary start
try:
st.info("Generating the summary.", icon="βΉοΈ")
summ_result = summ_inference(article_txt)
except Exception as e:
summ_result = None
summary_error = str(e)
if summ_result is not None:
st.success("Successfully generated the summary.", icon="β
")
else:
st.error("Encountered an error while generating the summary.", icon="π¨")
# Generating summary end
# NER start
try:
st.info("Recognizing the entites.", icon="βΉοΈ")
ner_result = [[ent, label.upper(), np.round(prob, 3)]
for ent, label, prob in ner_inference_long_text(article_txt)]
ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence'])
ner_result = get_ner_text(article_txt, ner_result).replace('$', '\$')
except Exception as e:
ner_result = None
ner_error = str(e)
if ner_result is not None:
st.success("Successfully recognized the entites.", icon="β
")
else:
st.error("Encountered an error while recognizing the entites.", icon="π¨")
# NER end
if (summary_error is None) and (ner_error is None):
status.update(label="Done", state="complete", expanded=False)
else:
status.update(label="Error", state="error", expanded=False)
if summary_error is not None:
st.error(f"Summary Error: \n{summary_error}", icon="π¨")
else:
st.markdown(f"<h4>SUMMARY:</h4>{summ_result}", unsafe_allow_html=True)
if ner_error is not None:
st.error(f"NER Error \n{ner_error}", icon="π¨")
else:
st.markdown(f"<h4>ENTITIES:</h4>{ner_result}", unsafe_allow_html=True)
# st.dataframe(ner_df, use_container_width=True)
############## ENTRY POINT END #######################
if __name__ == "__main__":
main() |