flaskapp / main.py
kumar9's picture
Update main.py
a04becc
raw
history blame
1.79 kB
from flask import Flask, jsonify, render_template, request, make_response
import transformers
import torch
from torch import nn
import re
import numpy as np
import pandas as pd
from collections import OrderedDict
# import requests
# from bs4 import BeautifulSoup
app = Flask(__name__)
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
dictOfModels = {"BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")}
# create a list of keys to use them in the select part of the html code
listOfKeys = []
for key in dictOfModels :
listOfKeys.append(key)
def get_prediction(message,model):
# inference
results = model(message)
return results
@app.route('/', methods=['GET'])
def get():
# in the select we will have each key of the list in option
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
@app.route('/', methods=['POST'])
def predict():
message = "This is good movies" #request.form['message']
# choice of the model
results = get_prediction(message, dictOfModels['BERT']) # get_prediction(message, dictOfModels['request.form.get("model_choice")'])
print(f'User selected model : {request.form.get("model_choice")}')
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
return render_template('result.html', text = f'{message}', prediction = my_prediction)
# @app.route('/')
# def home():
# print(1)
# return {'key':"Hello HuggingFace! Successfully deployed. "}
# # model = load_checkpoint('checkpoint.pth')
# # print(2)
# # res = sample(model, obj.maxlen, 'ap')
# # print(3)
# # return {'key':res}