Update main.py
Browse files
main.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
import re
|
@@ -10,214 +11,40 @@ from collections import OrderedDict
|
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
self.input_seq_index, self.target_seq_index = self.get_seq(self.char2int, self.input_seq_char, self.target_seq_char, len(self.text))
|
51 |
-
self.dict_size = len(self.char2int)
|
52 |
-
self.seq_len = self.maxlen - 1
|
53 |
-
self.batch_size = len(self.text)
|
54 |
-
self.input_seq = self.one_hot_encode(self.input_seq_index, self.dict_size, self.seq_len, self.batch_size)
|
55 |
-
|
56 |
-
def one_hot_encode(self, sequence, dict_size, seq_len, batch_size):
|
57 |
-
# Creating a multi-dimensional array of zeros with the desired output shape
|
58 |
-
features = np.zeros((batch_size, seq_len, dict_size), dtype=np.float32)
|
59 |
-
|
60 |
-
# Replacing the 0 at the relevant character index with a 1 to represent that character
|
61 |
-
for i in range(batch_size):
|
62 |
-
for u in range(seq_len):
|
63 |
-
features[i, u, sequence[i][u]] = 1
|
64 |
-
return features
|
65 |
-
|
66 |
-
def get_seq(self, char2int, input_seq_char, target_seq_char,n):
|
67 |
-
x=[]
|
68 |
-
y=[]
|
69 |
-
for i in range(n):
|
70 |
-
x.append([char2int[character] for character in input_seq_char[i]])
|
71 |
-
y.append([char2int[character] for character in target_seq_char[i]])
|
72 |
-
return x,y
|
73 |
-
|
74 |
-
def get_seq_char(self, text):
|
75 |
-
input_seq = []
|
76 |
-
target_seq = []
|
77 |
-
|
78 |
-
for i in range(len(text)):
|
79 |
-
# Remove last character for input sequence
|
80 |
-
input_seq.append(text[i][:-1])
|
81 |
-
# Remove first character for target sequence
|
82 |
-
target_seq.append(text[i][1:])
|
83 |
-
return input_seq, target_seq
|
84 |
-
|
85 |
-
def unique_chars(self, chars_all):
|
86 |
-
chars = []
|
87 |
-
for letter in chars_all:
|
88 |
-
if letter not in chars:
|
89 |
-
chars.append(letter)
|
90 |
-
# chars = sorted(chars)
|
91 |
-
if ' ' not in chars:
|
92 |
-
chars.append(' ')
|
93 |
-
return sorted(chars)
|
94 |
-
|
95 |
-
def update_text(self):
|
96 |
-
for i in range(len(self.text)):
|
97 |
-
while len(self.text[i])<self.maxlen:
|
98 |
-
self.text[i] += ' '
|
99 |
-
|
100 |
-
def description(self):
|
101 |
-
text = {}
|
102 |
-
for word in self.text:
|
103 |
-
char = word[0]
|
104 |
-
if char not in text:
|
105 |
-
text[char] = []
|
106 |
-
text[char].append(word.strip())
|
107 |
-
for k,v in (sorted(text.items())):
|
108 |
-
print(f'{k} : {sorted(v)}')
|
109 |
-
|
110 |
-
def lengt_analysis(self):
|
111 |
-
text = {}
|
112 |
-
words = set(self.text_all)
|
113 |
-
for word in words:
|
114 |
-
n = len(word)
|
115 |
-
if n not in text:
|
116 |
-
text[n] = []
|
117 |
-
text[n].append(word.strip())
|
118 |
-
for k,v in (sorted(text.items())):
|
119 |
-
print(f'{k} : count = {len(v)} list = {sorted(v)}')
|
120 |
-
return None # text
|
121 |
-
|
122 |
-
|
123 |
-
def create_object(doc):
|
124 |
-
return Text2Words(doc)
|
125 |
-
|
126 |
-
|
127 |
-
def get_inputs(obj):
|
128 |
-
input_seq = torch.tensor(obj.input_seq, device=device)
|
129 |
-
target_seq_index = torch.tensor(obj.target_seq_index, device=device)
|
130 |
-
return input_seq, target_seq_index
|
131 |
-
|
132 |
-
class Model(nn.Module):
|
133 |
-
def __init__(self, input_size, output_size, hidden_dim, n_layers):
|
134 |
-
super(Model, self).__init__()
|
135 |
-
|
136 |
-
# Defining some parameters
|
137 |
-
self.hidden_dim = hidden_dim
|
138 |
-
self.n_layers = n_layers
|
139 |
-
|
140 |
-
#Defining the layers
|
141 |
-
# RNN Layer
|
142 |
-
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
|
143 |
-
# Fully connected layer
|
144 |
-
self.fc = nn.Linear(hidden_dim, output_size)
|
145 |
-
|
146 |
-
def forward(self, x):
|
147 |
-
batch_size = x.size(0)
|
148 |
-
hidden = self.init_hidden(batch_size)
|
149 |
-
out, hidden = self.rnn(x, hidden)
|
150 |
-
out = out.contiguous().view(-1, self.hidden_dim)
|
151 |
-
out = self.fc(out)
|
152 |
-
return out, hidden
|
153 |
-
|
154 |
-
def init_hidden(self, batch_size):
|
155 |
-
# This method generates the first hidden state of zeros
|
156 |
-
torch.manual_seed(42)
|
157 |
-
hidden = torch.zeros((self.n_layers, batch_size, self.hidden_dim), device=device)
|
158 |
-
return hidden
|
159 |
-
|
160 |
-
def create_model(obj):
|
161 |
-
model = Model(input_size=obj.dict_size, output_size=obj.dict_size, hidden_dim=2*obj.dict_size, n_layers=1)
|
162 |
-
model.to(device)
|
163 |
-
lr=0.01
|
164 |
-
criterion = nn.CrossEntropyLoss()
|
165 |
-
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
166 |
-
return model, criterion, optimizer
|
167 |
-
|
168 |
-
# This function takes in the model and character as arguments and returns the next character prediction and hidden state
|
169 |
-
def predict(model, character):
|
170 |
-
# One-hot encoding our input to fit into the model
|
171 |
-
# print(character)
|
172 |
-
character = np.array([[obj.char2int[c] for c in character]])
|
173 |
-
# print(character)
|
174 |
-
character = obj.one_hot_encode(character, obj.dict_size, character.shape[1], 1)
|
175 |
-
# print(character,character.shape)
|
176 |
-
character = torch.tensor(character, device=device)
|
177 |
-
character.to(device)
|
178 |
-
out, hidden = model(character)
|
179 |
-
# print(out, hidden)
|
180 |
-
prob = nn.functional.softmax(out[-1], dim=0).data
|
181 |
-
# print(prob)
|
182 |
-
char_ind = torch.max(prob, dim=0)[1].item()
|
183 |
-
# print(sorted(prob, reverse=True))
|
184 |
-
return obj.int2char[char_ind], hidden
|
185 |
-
|
186 |
-
# This function takes the desired output length and input characters as arguments, returning the produced sentence
|
187 |
-
def sample(model, out_len, start='h'):
|
188 |
-
model.eval() # eval mode
|
189 |
-
chars = [ch for ch in start]
|
190 |
-
char = chars[-1]
|
191 |
-
chars = chars[:-1]
|
192 |
-
# Now pass in the previous characters and get a new one
|
193 |
-
while char != ' ':
|
194 |
-
chars.append(char)
|
195 |
-
char, h = predict(model, chars)
|
196 |
-
return ''.join(chars)
|
197 |
-
|
198 |
-
|
199 |
-
def load_checkpoint(filepath):
|
200 |
-
checkpoint = torch.load(filepath)
|
201 |
-
# print(checkpoint['state_dict'])
|
202 |
-
model = checkpoint['model']
|
203 |
-
# print(model)
|
204 |
-
model.load_state_dict(checkpoint['state_dict'])
|
205 |
-
# print(model.parameters())
|
206 |
-
# for parameter in model.parameters():
|
207 |
-
# parameter.requires_grad = False
|
208 |
-
# print(parameter)
|
209 |
-
|
210 |
-
|
211 |
-
model.eval()
|
212 |
-
return model
|
213 |
-
|
214 |
-
|
215 |
-
@app.route('/')
|
216 |
-
def home():
|
217 |
-
print(1)
|
218 |
-
return {'key':"Hello HuggingFace! Successfully deployed. "}
|
219 |
-
# model = load_checkpoint('checkpoint.pth')
|
220 |
-
# print(2)
|
221 |
-
# res = sample(model, obj.maxlen, 'ap')
|
222 |
-
# print(3)
|
223 |
-
# return {'key':res}
|
|
|
1 |
+
rom flask import Flask, jsonify, render_template, request, make_response
|
2 |
+
import transformers
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
import re
|
|
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
+
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
|
15 |
+
dictOfModels = {"BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")}
|
16 |
+
# create a list of keys to use them in the select part of the html code
|
17 |
+
listOfKeys = []
|
18 |
+
for key in dictOfModels :
|
19 |
+
listOfKeys.append(key)
|
20 |
+
|
21 |
+
def get_prediction(message,model):
|
22 |
+
# inference
|
23 |
+
results = model(message)
|
24 |
+
return results
|
25 |
+
|
26 |
+
@app.route('/', methods=['GET'])
|
27 |
+
def get():
|
28 |
+
# in the select we will have each key of the list in option
|
29 |
+
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
|
30 |
+
|
31 |
+
@app.route('/', methods=['POST'])
|
32 |
+
def predict():
|
33 |
+
message = "This is good movies" #request.form['message']
|
34 |
+
# choice of the model
|
35 |
+
results = get_prediction(message, dictOfModels['RoBERTa') # get_prediction(message, dictOfModels['request.form.get("model_choice")'])
|
36 |
+
print(f'User selected model : {request.form.get("model_choice")}')
|
37 |
+
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
|
38 |
+
return render_template('result.html', text = f'{message}', prediction = my_prediction)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# @app.route('/')
|
43 |
+
# def home():
|
44 |
+
# print(1)
|
45 |
+
# return {'key':"Hello HuggingFace! Successfully deployed. "}
|
46 |
+
# # model = load_checkpoint('checkpoint.pth')
|
47 |
+
# # print(2)
|
48 |
+
# # res = sample(model, obj.maxlen, 'ap')
|
49 |
+
# # print(3)
|
50 |
+
# # return {'key':res}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|