File size: 3,405 Bytes
17c016d
 
 
 
 
 
 
 
a3a6018
17c016d
 
 
 
 
 
 
 
 
 
 
 
68e19a9
17c016d
a3a6018
 
 
 
 
 
17c016d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6018
17c016d
 
68e19a9
17c016d
 
 
 
 
 
a3a6018
17c016d
 
 
 
 
 
 
a3a6018
17c016d
 
 
 
a3a6018
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
from transformers import pipeline
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import CLIPProcessor, CLIPModel
import torch
from PIL import Image
import requests
import os
import random


device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "openai/clip-vit-base-patch16"  # You can choose a different CLIP model from Hugging Face
clipprocessor = CLIPProcessor.from_pretrained(model_id)
clipmodel = CLIPModel.from_pretrained(model_id).to(device)


model_id = "Salesforce/blip-image-captioning-base" ## load modelID for BLIP
blipmodel = BlipForConditionalGeneration.from_pretrained(model_id)
blipprocessor = BlipProcessor.from_pretrained(model_id)

im_dir = os.path.join(os.getcwd(),'images')

def sample_image(im_dir=im_dir):
  all_ims = os.listdir(im_dir)
  new_im = random.choice(all_ims)
  return gr.Image(label="Target Image", interactive = False, type="pil",value =os.path.join(im_dir,new_im),height=500),gr.Textbox(label="Image fname",value=new_im,interactive=False, visible=False)


def evaluate_caption(image, caption):
    # # Pre-process image
    # image = processor(images=image, return_tensors="pt").to(device)

    # # Tokenize and encode the caption
    # text = processor(text=caption, return_tensors="pt").to(device)



    blip_input = blipprocessor(image, return_tensors="pt")
    out = blipmodel.generate(**blip_input,max_new_tokens=50)
    blip_caption = blipprocessor.decode(out[0], skip_special_tokens=True)

    inputs = clipprocessor(text=[caption,blip_caption], images=image, return_tensors="pt", padding=True)

    similarity_score = clipmodel(**inputs).logits_per_image



    # Convert score to a float
    score = similarity_score.softmax(dim=1).detach().numpy()
    print(score)
    if score[0][0]>score[0][1]:
      winner = "The first caption is the human"
    else:
      winner = "The second caption is the human"

    
    return blip_caption,winner
    # ,gr.Image(type="pil", value="mukherjee_kushin_WIDPICS1.jpg")

callback = gr.HuggingFaceDatasetSaver('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', "gradioTest")
with gr.Blocks() as demo:
  im_path_str = 'n01677366_12918.JPEG'
  im_path = gr.Textbox(label="Image fname",value=im_path_str,interactive=False, visible=False)
  # fn=evaluate_caption,
  # inputs=["image", "text"]
 
  
  with gr.Column():
    im = gr.Image(label="Target Image", interactive = False, type="pil",value =os.path.join(im_dir,im_path_str),height=500)
    caps = gr.Textbox(label="Player 1 Caption")
    submit_btn = gr.Button("Submit!!")
  # outputs=["text","text"],
  with gr.Column():
    out1 = gr.Textbox(label="Player 2 (Machine) Caption",interactive=False)
    out2 = gr.Textbox(label="Winner",interactive=False)
    reload_btn = gr.Button("Next Image")


  # live=False,
  # interpretation="default"
  callback.setup([caps, out1, out2, im_path], "flagged_data_points")
  # callback.flag([image, caption, blip_caption, winner])
  submit_btn.click(fn = evaluate_caption,inputs = [im,caps], outputs = [out1, out2],api_name="test").success(lambda *args: callback.flag(args), [caps, out1, out2, im_path], None, preprocess=False)
  reload_btn.click(fn = sample_image, inputs=None, outputs = [im,im_path] )
  # with gr.Row():
  #     btn = gr.Button("Flag")
  # btn.click(lambda *args: callback.flag(args), [im, caps, out1, out2], None, preprocess=False)

demo.launch()