Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the model
|
5 |
+
MODEL_PATH = "unitary/toxic-bert"
|
6 |
+
classifier = pipeline("text-classification", model=MODEL_PATH, tokenizer=MODEL_PATH)
|
7 |
+
|
8 |
+
def predict_toxicity(text):
|
9 |
+
# Get predictions
|
10 |
+
predictions = classifier(text, return_all_scores=True)[0]
|
11 |
+
|
12 |
+
# Format results
|
13 |
+
results = {}
|
14 |
+
for pred in predictions:
|
15 |
+
results[pred['label']] = f"{pred['score']:.4f}"
|
16 |
+
|
17 |
+
return results
|
18 |
+
|
19 |
+
# Create the Gradio interface
|
20 |
+
iface = gr.Interface(
|
21 |
+
fn=predict_toxicity,
|
22 |
+
inputs=gr.Textbox(lines=5, label="Enter text to analyze"),
|
23 |
+
outputs=gr.Label(num_top_classes=6, label="Toxicity Scores"),
|
24 |
+
title="Toxicity Prediction",
|
25 |
+
description="This POC uses the model based onm toxic-bert to predict toxicity in text. Multi-class response.",
|
26 |
+
examples=[
|
27 |
+
["Great game everyone!"],
|
28 |
+
["You're such a noob, uninstall please."],
|
29 |
+
["I hope you die in real life, loser."],
|
30 |
+
["Nice move! How did you do that?"],
|
31 |
+
["Go back to the kitchen where you belong."],
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
# Launch the app
|
36 |
+
iface.launch()
|