File size: 1,297 Bytes
122040d
fb46ba0
583f98e
 
fb46ba0
583f98e
baaac86
583f98e
122040d
583f98e
 
 
122040d
583f98e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb46ba0
 
583f98e
baaac86
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
# import numpy as np
import torch
import requests
# from PIL import Image
from torchvision import transforms

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()

# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

# def sepia(input_img):
#     sepia_filter = np.array([
#         [0.393, 0.769, 0.189], 
#         [0.349, 0.686, 0.168], 
#         [0.272, 0.534, 0.131]
#     ])
#     sepia_img = input_img.dot(sepia_filter.T)
#     sepia_img /= sepia_img.max()
#     return sepia_img

# def greet(name):
#     return "Hello " + name + "!!"

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
  return confidences

# demo = gr.Interface(fn=sepia, inputs="image", outputs="image")
demo = gr.Interface(fn=predict,
                    inputs=gr.inputs.Image(type="pil"),
                    outputs=gr.outputs.Label(num_top_classes=3),
                    examples=["lion.jpg", "cheetah.jpg"])
demo.launch()

# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()