import gc import logging from typing import Generator, Union import numpy as np import torch from modules import config, models from modules.ChatTTS import ChatTTS from modules.devices import devices from modules.speaker import Speaker from modules.utils.cache import conditional_cache from modules.utils.SeedContext import SeedContext logger = logging.getLogger(__name__) SAMPLE_RATE = 24000 def generate_audio( text: str, temperature: float = 0.3, top_P: float = 0.7, top_K: float = 20, spk: Union[int, Speaker] = -1, infer_seed: int = -1, use_decoder: bool = True, prompt1: str = "", prompt2: str = "", prefix: str = "", ): (sample_rate, wav) = generate_audio_batch( [text], temperature=temperature, top_P=top_P, top_K=top_K, spk=spk, infer_seed=infer_seed, use_decoder=use_decoder, prompt1=prompt1, prompt2=prompt2, prefix=prefix, )[0] return (sample_rate, wav) def parse_infer_params( texts: list[str], chat_tts: ChatTTS.Chat, temperature: float = 0.3, top_P: float = 0.7, top_K: float = 20, spk: Union[int, Speaker] = -1, infer_seed: int = -1, prompt1: str = "", prompt2: str = "", prefix: str = "", ): params_infer_code = { "spk_emb": None, "temperature": temperature, "top_P": top_P, "top_K": top_K, "prompt1": prompt1 or "", "prompt2": prompt2 or "", "prefix": prefix or "", "repetition_penalty": 1.0, "disable_tqdm": config.runtime_env_vars.off_tqdm, } if isinstance(spk, int): with SeedContext(spk, True): params_infer_code["spk_emb"] = chat_tts.sample_random_speaker() logger.debug(("spk", spk)) elif isinstance(spk, Speaker): if not isinstance(spk.emb, torch.Tensor): raise ValueError("spk.pt is broken, please retrain the model.") params_infer_code["spk_emb"] = spk.emb logger.debug(("spk", spk.name)) else: logger.warn( f"spk must be int or Speaker, but: <{type(spk)}> {spk}, wiil set to default voice" ) with SeedContext(2, True): params_infer_code["spk_emb"] = chat_tts.sample_random_speaker() logger.debug( { "text": texts, "infer_seed": infer_seed, "temperature": temperature, "top_P": top_P, "top_K": top_K, "prompt1": prompt1 or "", "prompt2": prompt2 or "", "prefix": prefix or "", } ) return params_infer_code @torch.inference_mode() def generate_audio_batch( texts: list[str], temperature: float = 0.3, top_P: float = 0.7, top_K: float = 20, spk: Union[int, Speaker] = -1, infer_seed: int = -1, use_decoder: bool = True, prompt1: str = "", prompt2: str = "", prefix: str = "", ): chat_tts = models.load_chat_tts() params_infer_code = parse_infer_params( texts=texts, chat_tts=chat_tts, temperature=temperature, top_P=top_P, top_K=top_K, spk=spk, infer_seed=infer_seed, prompt1=prompt1, prompt2=prompt2, prefix=prefix, ) with SeedContext(infer_seed, True): wavs = chat_tts.generate_audio( prompt=texts, params_infer_code=params_infer_code, use_decoder=use_decoder ) if config.auto_gc: devices.torch_gc() gc.collect() return [(SAMPLE_RATE, np.array(wav).flatten().astype(np.float32)) for wav in wavs] # TODO: generate_audio_stream 也应该支持 lru cache @torch.inference_mode() def generate_audio_stream( text: str, temperature: float = 0.3, top_P: float = 0.7, top_K: float = 20, spk: Union[int, Speaker] = -1, infer_seed: int = -1, use_decoder: bool = True, prompt1: str = "", prompt2: str = "", prefix: str = "", ) -> Generator[tuple[int, np.ndarray], None, None]: chat_tts = models.load_chat_tts() texts = [text] params_infer_code = parse_infer_params( texts=texts, chat_tts=chat_tts, temperature=temperature, top_P=top_P, top_K=top_K, spk=spk, infer_seed=infer_seed, prompt1=prompt1, prompt2=prompt2, prefix=prefix, ) with SeedContext(infer_seed, True): wavs_gen = chat_tts.generate_audio( prompt=texts, params_infer_code=params_infer_code, use_decoder=use_decoder, stream=True, ) for wav in wavs_gen: yield [SAMPLE_RATE, np.array(wav).flatten().astype(np.float32)] if config.auto_gc: devices.torch_gc() gc.collect() return lru_cache_enabled = False def setup_lru_cache(): global generate_audio_batch global lru_cache_enabled if lru_cache_enabled: return lru_cache_enabled = True def should_cache(*args, **kwargs): spk_seed = kwargs.get("spk", -1) infer_seed = kwargs.get("infer_seed", -1) return spk_seed != -1 and infer_seed != -1 lru_size = config.runtime_env_vars.lru_size if isinstance(lru_size, int): generate_audio_batch = conditional_cache(lru_size, should_cache)( generate_audio_batch ) logger.info(f"LRU cache enabled with size {lru_size}") else: logger.debug(f"LRU cache failed to enable, invalid size {lru_size}") if __name__ == "__main__": import soundfile as sf # 测试batch生成 inputs = ["你好[lbreak]", "再见[lbreak]", "长度不同的文本片段[lbreak]"] outputs = generate_audio_batch(inputs, spk=5, infer_seed=42) for i, (sample_rate, wav) in enumerate(outputs): print(i, sample_rate, wav.shape) sf.write(f"batch_{i}.wav", wav, sample_rate, format="wav") # 单独生成 for i, text in enumerate(inputs): sample_rate, wav = generate_audio(text, spk=5, infer_seed=42) print(i, sample_rate, wav.shape) sf.write(f"one_{i}.wav", wav, sample_rate, format="wav")