Spaces:
Running
Running
File size: 3,303 Bytes
f1c2d0d ba01868 f1c2d0d ba01868 3d36ed5 ba01868 3d36ed5 ba01868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import numpy as np
import gradio as gr
import roop.globals
from roop.core import (
start,
decode_execution_providers,
suggest_max_memory,
suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image
def swap_face(source_file, target_file, doFaceEnhancer):
source_path = "input.jpg"
target_path = "target.jpg"
source_image = Image.fromarray(source_file)
source_image.save(source_path)
target_image = Image.fromarray(target_file)
target_image.save(target_path)
print("source_path: ", source_path)
print("target_path: ", target_path)
roop.globals.source_path = source_path
roop.globals.target_path = target_path
output_path = "output.jpg"
roop.globals.output_path = normalize_output_path(
roop.globals.source_path, roop.globals.target_path, output_path
)
if doFaceEnhancer:
roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
else:
roop.globals.frame_processors = ["face_swapper"]
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.max_memory = suggest_max_memory()
roop.globals.execution_providers = decode_execution_providers(["cuda"])
roop.globals.execution_threads = suggest_execution_threads()
print(
"start process",
roop.globals.source_path,
roop.globals.target_path,
roop.globals.output_path,
)
for frame_processor in get_frame_processors_modules(
roop.globals.frame_processors
):
if not frame_processor.pre_check():
return
start()
return output_path
css = """
.gradio-container {
min-width: 100% !important;
}
#image_output1 {
max-height: 500px !important;
}
#image_output2 {
max-height: 500px !important;
}
#generate {
width: 100%;
background: #e253dd !important;
border: none;
border-radius: 50px;
outline: none !important;
color: white;
}
#generate:hover {
background: #de6bda !important;
outline: none !important;
color: #fff;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
image_input_1 = gr.Image(show_download_button=False, interactive=True, label='Изображение вашего лица:', elem_id='image_output1', type='numpy')
image_input_2 = gr.Image(show_download_button=False, interactive=True, label='Изображение для замены лица:', elem_id='image_output2', type='numpy')
check = gr.Checkbox(label="Улучшить качество лица?", value=True)
text_button = gr.Button("Запустить нейросеть", variant='primary', elem_id="generate")
with gr.Column():
image_output= gr.Image(show_download_button=False, interactive=False, label='Результат:', type='numpy')
text_button.click(swap_face, inputs=[image_input_1, image_input_2, check], outputs=image_output)
demo.queue(default_concurrency_limit=1)
demo.launch() |