File size: 3,205 Bytes
f1c2d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba01868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c2d0d
 
ba01868
 
 
3d36ed5
 
ba01868
 
 
3d36ed5
ba01868
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import gradio as gr
import roop.globals
from roop.core import (
    start,
    decode_execution_providers,
    suggest_max_memory,
    suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image


def swap_face(source_file, target_file, doFaceEnhancer):

    source_path = "input.jpg"
    target_path = "target.jpg"

    source_image = Image.fromarray(source_file)
    source_image.save(source_path)
    target_image = Image.fromarray(target_file)
    target_image.save(target_path)

    print("source_path: ", source_path)
    print("target_path: ", target_path)

    roop.globals.source_path = source_path
    roop.globals.target_path = target_path
    output_path = "output.jpg"
    roop.globals.output_path = normalize_output_path(
        roop.globals.source_path, roop.globals.target_path, output_path
    )
    if doFaceEnhancer:
        roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
    else:
        roop.globals.frame_processors = ["face_swapper"]
    roop.globals.headless = True
    roop.globals.keep_fps = True
    roop.globals.keep_audio = True
    roop.globals.keep_frames = False
    roop.globals.many_faces = False
    roop.globals.video_encoder = "libx264"
    roop.globals.video_quality = 18
    roop.globals.max_memory = suggest_max_memory()
    roop.globals.execution_providers = decode_execution_providers(["cuda"])
    roop.globals.execution_threads = suggest_execution_threads()

    print(
        "start process",
        roop.globals.source_path,
        roop.globals.target_path,
        roop.globals.output_path,
    )

    for frame_processor in get_frame_processors_modules(
        roop.globals.frame_processors
    ):
        if not frame_processor.pre_check():
            return

    start()
    return output_path

css = """
.gradio-container {
min-width: 100% !important;
}
#generate {
    width: 100%;
    background: #e253dd !important;
    border: none;
    border-radius: 50px;
    outline: none !important;
    color: white;
}
#generate:hover {
    background: #de6bda !important;
    outline: none !important;
    color: #fff;
    }
"""


with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            image_input_1 = gr.Image(show_download_button=False, interactive=True, label='Изображение вашего лица:', elem_id='image_output1', type='numpy')
            image_input_2 = gr.Image(show_download_button=False, interactive=True, label='Изображение для замены лица:', elem_id='image_output2', type='numpy')
            check = gr.Checkbox(label="Улучшить качество лица?", value=True)
            text_button = gr.Button("Запустить нейросеть", variant='primary', elem_id="generate")
        with gr.Column():
            image_output= gr.Image(show_download_button=False, interactive=False, label='Результат:', type='numpy')
            text_button.click(swap_face, inputs=[image_input_1, image_input_2, check], outputs=image_output)

demo.queue(default_concurrency_limit=1)
demo.launch()