import numpy as np import gradio as gr import roop.globals from roop.core import ( start, decode_execution_providers, suggest_max_memory, suggest_execution_threads, ) from roop.processors.frame.core import get_frame_processors_modules from roop.utilities import normalize_output_path import os from PIL import Image def swap_face(source_file, target_file, doFaceEnhancer): source_path = "input.jpg" target_path = "target.jpg" source_image = Image.fromarray(source_file) source_image.save(source_path) target_image = Image.fromarray(target_file) target_image.save(target_path) print("source_path: ", source_path) print("target_path: ", target_path) roop.globals.source_path = source_path roop.globals.target_path = target_path output_path = "output.jpg" roop.globals.output_path = normalize_output_path( roop.globals.source_path, roop.globals.target_path, output_path ) if doFaceEnhancer: roop.globals.frame_processors = ["face_swapper", "face_enhancer"] else: roop.globals.frame_processors = ["face_swapper"] roop.globals.headless = True roop.globals.keep_fps = True roop.globals.keep_audio = True roop.globals.keep_frames = False roop.globals.many_faces = False roop.globals.video_encoder = "libx264" roop.globals.video_quality = 18 roop.globals.max_memory = suggest_max_memory() roop.globals.execution_providers = decode_execution_providers(["cuda"]) roop.globals.execution_threads = suggest_execution_threads() print( "start process", roop.globals.source_path, roop.globals.target_path, roop.globals.output_path, ) for frame_processor in get_frame_processors_modules( roop.globals.frame_processors ): if not frame_processor.pre_check(): return start() return output_path css = """ .gradio-container { min-width: 100% !important; } #generate { width: 100%; background: #e253dd !important; border: none; border-radius: 50px; outline: none !important; color: white; } #generate:hover { background: #de6bda !important; outline: none !important; color: #fff; } """ with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): image_input_1 = gr.Image(show_download_button=False, interactive=True, label='Изображение вашего лица:', elem_id='image_output1', type='numpy') image_input_2 = gr.Image(show_download_button=False, interactive=True, label='Изображение для замены лица:', elem_id='image_output2', type='numpy') check = gr.Checkbox(label="Улучшить качество лица?", value=True) text_button = gr.Button("Запустить нейросеть", variant='primary', elem_id="generate") with gr.Column(): image_output= gr.Image(show_download_button=False, interactive=False, label='Результат:', type='numpy') text_button.click(swap_face, inputs=[image_input_1, image_input_2, check], outputs=image_output) demo.queue(default_concurrency_limit=1) demo.launch()