sd15 / app.py
lalashechka's picture
Update app.py
c07c14d verified
raw
history blame
7.34 kB
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64
def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed}
# print(result)
language = detect(prompt)
if language == 'ru':
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
# print(prompt)
cfg = int(cfg_scale)
steps = int(steps)
seed = int(seed)
url_sd1 = os.getenv("url_sd1")
url_sd2 = os.getenv("url_sd2")
url_sd3 = os.getenv("url_sd3")
if task == 'Realistic Vision 5.0':
model = 'Realistic_Vision_V5.0.safetensors+%5B614d1063%5D'
if task == 'Dreamshaper 8':
model = 'dreamshaper_8.safetensors+%5B9d40847d%5D'
if task == 'Deliberate 3':
model = 'deliberate_v3.safetensors+%5Bafd9d2d4%5D'
if task == 'Analog Diffusion':
model = 'analog-diffusion-1.0.ckpt+%5B9ca13f02%5D'
if task == 'Lyriel 1.6':
model = 'lyriel_v16.safetensors+%5B68fceea2%5D'
if task == "Elldreth's Vivid Mix":
model = 'elldreths-vivid-mix.safetensors+%5B342d9d26%5D'
if task == 'Anything V5':
model = 'anything-v4.5-pruned.ckpt+%5B65745d25%5D'
if task == 'Openjourney V4':
model = 'openjourney_V4.ckpt+%5Bca2f377f%5D'
if task == 'AbsoluteReality 1.8.1':
model = 'absolutereality_v181.safetensors+%5B3d9d4d2b%5D'
if task == 'epiCRealism v5':
model = 'epicrealism_naturalSinRC1VAE.safetensors+%5B90a4c676%5D'
if task == 'CyberRealistic 3.3':
model = 'cyberrealistic_v33.safetensors+%5B82b0d085%5D'
if task == 'ToonYou 6':
model = 'toonyou_beta6.safetensors+%5B980f6b15%5D'
c = 0
r = requests.get(f'{url_sd1}{prompt}&model={model}&negative_prompt={negative_prompt}&steps={steps}&cfg={cfg}&seed={seed}&sampler={sampler}&aspect_ratio=square', timeout=10)
job = r.json()['job']
while c < 10:
c += 1
time.sleep(2)
r2 = requests.get(f'{url_sd2}{job}', timeout=10)
status = r2.json()['status']
if status == 'succeeded':
photo = f'{url_sd3}{job}.png'
return photo
if status == "queued":
continue
if status == 'failed':
return None
def mirror(image_output, scale_by, method, gfpgan, codeformer):
url_up = os.getenv("url_up")
url_up_f = os.getenv("url_up_f")
scale_by = int(scale_by)
gfpgan = int(gfpgan)
codeformer = int(codeformer)
with open(image_output, "rb") as image_file:
encoded_string2 = base64.b64encode(image_file.read())
encoded_string2 = str(encoded_string2).replace("b'", '')
encoded_string2 = "data:image/png;base64," + encoded_string2
data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,512,512,None,method,"None",1,False,[],"",""],"session_hash":""}
# print(data)
r = requests.post(f"{url_up}", json=data, timeout=100)
# print(r.text)
ph = f"{url_up_f}" + str(r.json()['data'][0][0]['name'])
return ph
css = """
#generate {
width: 100%;
background: #e253dd !important;
border: none;
border-radius: 50px;
outline: none !important;
color: white;
}
#generate:hover {
background: #de6bda !important;
outline: none !important;
color: #fff;
}
#image_output {
display: flex;
justify-content: center;
}
footer {visibility: hidden !important;}
#image_output {
height: 100% !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Tab("Базовые настройки"):
with gr.Row():
prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
with gr.Row():
task = gr.Radio(interactive=True, value="Deliberate 3", show_label=True, label="Модель нейросети:",
choices=["AbsoluteReality 1.8.1", "Elldreth's Vivid Mix", "Anything V5", "Openjourney V4", "Analog Diffusion",
"Lyriel 1.6", "Realistic Vision 5.0", "Dreamshaper 8", "epiCRealism v5",
"CyberRealistic 3.3", "ToonYou 6", "Deliberate 3"])
with gr.Tab("Расширенные настройки"):
with gr.Row():
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
with gr.Row():
sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
"Euler", "Euler a", "Heun", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
with gr.Row():
steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=30, value=25, step=1)
with gr.Row():
cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
with gr.Row():
seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
with gr.Tab("Настройки апскейлинга"):
with gr.Column():
with gr.Row():
scale_by = gr.Number(show_label=True, label="Во сколько раз увеличить:", minimum=1, maximum=4, value=2, step=1)
with gr.Row():
method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Алгоритм увеличения", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"])
with gr.Column():
with gr.Row():
gfpgan = gr.Slider(show_label=True, label="Эффект GFPGAN (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
with gr.Row():
codeformer = gr.Slider(show_label=True, label="Эффект CodeFormer (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
with gr.Column():
text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
with gr.Column():
image_output = gr.Image(show_label=True, show_download_button=True, interactive=False, label='Результат:', elem_id='image_output', type='filepath')
text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output)
img2img_b = gr.Button("Увеличить изображение", variant='secondary')
image_i2i = gr.Image(show_label=True, label='Увеличенное изображение:')
img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i)
demo.queue(default_concurrency_limit=24)
demo.launch()