import gradio as gr import requests import time import json from contextlib import closing from websocket import create_connection from deep_translator import GoogleTranslator from langdetect import detect import os from PIL import Image import io import base64 def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed): result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed} # print(result) language = detect(prompt) if language == 'ru': prompt = GoogleTranslator(source='ru', target='en').translate(prompt) # print(prompt) cfg = int(cfg_scale) steps = int(steps) seed = int(seed) url_sd1 = os.getenv("url_sd1") url_sd2 = os.getenv("url_sd2") url_sd3 = os.getenv("url_sd3") if task == 'Realistic Vision 5.0': model = 'Realistic_Vision_V5.0.safetensors+%5B614d1063%5D' if task == 'Dreamshaper 8': model = 'dreamshaper_8.safetensors+%5B9d40847d%5D' if task == 'Deliberate 3': model = 'deliberate_v3.safetensors+%5Bafd9d2d4%5D' if task == 'Analog Diffusion': model = 'analog-diffusion-1.0.ckpt+%5B9ca13f02%5D' if task == 'Lyriel 1.6': model = 'lyriel_v16.safetensors+%5B68fceea2%5D' if task == "Elldreth's Vivid Mix": model = 'elldreths-vivid-mix.safetensors+%5B342d9d26%5D' if task == 'Anything V5': model = 'anything-v4.5-pruned.ckpt+%5B65745d25%5D' if task == 'Openjourney V4': model = 'openjourney_V4.ckpt+%5Bca2f377f%5D' if task == 'AbsoluteReality 1.8.1': model = 'absolutereality_v181.safetensors+%5B3d9d4d2b%5D' if task == 'epiCRealism v5': model = 'epicrealism_naturalSinRC1VAE.safetensors+%5B90a4c676%5D' if task == 'CyberRealistic 3.3': model = 'cyberrealistic_v33.safetensors+%5B82b0d085%5D' if task == 'ToonYou 6': model = 'toonyou_beta6.safetensors+%5B980f6b15%5D' c = 0 r = requests.get(f'{url_sd1}{prompt}&model={model}&negative_prompt={negative_prompt}&steps={steps}&cfg={cfg}&seed={seed}&sampler={sampler}&aspect_ratio=square', timeout=10) job = r.json()['job'] while c < 10: c += 1 time.sleep(2) r2 = requests.get(f'{url_sd2}{job}', timeout=10) status = r2.json()['status'] if status == 'succeeded': photo = f'{url_sd3}{job}.png' return photo if status == "queued": continue if status == 'failed': return None def mirror(image_output, scale_by, method, gfpgan, codeformer): url_up = os.getenv("url_up") url_up_f = os.getenv("url_up_f") scale_by = int(scale_by) gfpgan = int(gfpgan) codeformer = int(codeformer) with open(image_output, "rb") as image_file: encoded_string2 = base64.b64encode(image_file.read()) encoded_string2 = str(encoded_string2).replace("b'", '') encoded_string2 = "data:image/png;base64," + encoded_string2 data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,512,512,None,method,"None",1,False,[],"",""],"session_hash":""} # print(data) r = requests.post(f"{url_up}", json=data, timeout=100) # print(r.text) ph = f"{url_up_f}" + str(r.json()['data'][0][0]['name']) return ph css = """ .gradio-container { min-width: 100% !important; padding: 0px !important; } #generate { width: 100%; background: #e253dd !important; border: none; border-radius: 50px; outline: none !important; color: white; } #generate:hover { background: #de6bda !important; outline: none !important; color: #fff; } #image_output { display: flex; justify-content: center; } footer {visibility: hidden !important;} #image_output { height: 100% !important; } """ with gr.Blocks(css=css) as demo: with gr.Tab("Базовые настройки"): with gr.Row(): prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3) with gr.Row(): task = gr.Radio(interactive=True, value="Deliberate 3", show_label=True, label="Модель нейросети:", choices=["AbsoluteReality 1.8.1", "Elldreth's Vivid Mix", "Anything V5", "Openjourney V4", "Analog Diffusion", "Lyriel 1.6", "Realistic Vision 5.0", "Dreamshaper 8", "epiCRealism v5", "CyberRealistic 3.3", "ToonYou 6", "Deliberate 3"]) with gr.Tab("Расширенные настройки"): with gr.Row(): negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry") with gr.Row(): sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[ "Euler", "Euler a", "Heun", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"]) with gr.Row(): steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=30, value=25, step=1) with gr.Row(): cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1) with gr.Row(): seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1) with gr.Tab("Настройки апскейлинга"): with gr.Column(): with gr.Row(): scale_by = gr.Number(show_label=True, label="Во сколько раз увеличить:", minimum=1, maximum=4, value=2, step=1) with gr.Row(): method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Алгоритм увеличения", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"]) with gr.Column(): with gr.Row(): gfpgan = gr.Slider(show_label=True, label="Эффект GFPGAN (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1) with gr.Row(): codeformer = gr.Slider(show_label=True, label="Эффект CodeFormer (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1) with gr.Column(): text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate") with gr.Column(): image_output = gr.Image(show_label=True, show_download_button=True, interactive=False, label='Результат:', elem_id='image_output', type='filepath') text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output) img2img_b = gr.Button("Увеличить изображение", variant='secondary') image_i2i = gr.Image(show_label=True, label='Увеличенное изображение:') img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i) demo.queue(default_concurrency_limit=24) demo.launch()