Spaces:
Running
Running
File size: 7,316 Bytes
22d4eb1 7dd17d6 22d4eb1 7dd17d6 557ed44 22d4eb1 7dd17d6 9bfa07c 7dd17d6 22d4eb1 7dd17d6 557ed44 7dd17d6 557ed44 22d4eb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64
def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed}
print(result)
language = detect(prompt)
if language == 'ru':
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(prompt)
cfg = int(cfg_scale)
steps = int(steps)
seed = int(seed)
width = 1024
height = 1024
url_sd1 = os.getenv("url_sd1")
url_sd2 = os.getenv("url_sd2")
url_sd3 = os.getenv("url_sd3")
url_sd4 = os.getenv("url_sd4")
print(task)
try:
print('n_1')
with closing(create_connection(f"{url_sd3}", timeout=60)) as conn:
conn.send('{"fn_index":3,"session_hash":""}')
conn.send(f'{{"data":["{prompt}, 4k photo","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",7.5,"(No style)"],"event_data":null,"fn_index":3,"session_hash":""}}')
while True:
status = json.loads(conn.recv())['msg']
if status == 'estimation':
continue
if status == 'process_starts':
break
photo = json.loads(conn.recv())['output']['data'][0][0]
photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
return photo
except:
try:
print("n_2")
with closing(create_connection(f"{url_sd4}", timeout=60)) as conn:
conn.send('{"fn_index":0,"session_hash":""}')
conn.send(f'{{"data":["{prompt}","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry","dreamshaperXL10_alpha2.safetensors [c8afe2ef]",30,"DPM++ 2M Karras",7,1024,1024,-1],"event_data":null,"fn_index":0,"session_hash":""}}')
conn.recv()
conn.recv()
conn.recv()
conn.recv()
photo = json.loads(conn.recv())['output']['data'][0]
photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
return photo
except:
print("n_3")
if task == 'Stable Diffusion XL 1.0':
model = 'sd_xl_base_1.0'
if task == 'Crystal Clear XL':
model = '[3d] crystalClearXL_ccxl_97637'
if task == 'Juggernaut XL':
model = '[photorealistic] juggernautXL_version2_113240'
if task == 'DreamShaper XL':
model = '[base model] dreamshaperXL09Alpha_alpha2Xl10_91562'
if task == 'SDXL Niji':
model = '[midjourney] sdxlNijiV51_sdxlNijiV51_112807'
if task == 'Cinemax SDXL':
model = '[movie] cinemaxAlphaSDXLCinema_alpha1_107473'
if task == 'NightVision XL':
model = '[photorealistic] nightvisionXLPhotorealisticPortrait_beta0702Bakedvae_113098'
negative = negative_prompt
try:
with closing(create_connection(f"{url_sd1}")) as conn:
conn.send('{"fn_index":231,"session_hash":""}')
conn.send(f'{{"data":["task()","{prompt}","{negative}",[],{steps},"{sampler}",false,false,1,1,{cfg},{seed},-1,0,0,0,false,{width},{height},false,0.7,2,"Lanczos",0,0,0,"Use same sampler","","",[],"None",true,"{model}","Automatic",null,null,null,false,false,"positive","comma",0,false,false,"","Seed","",[],"Nothing","",[],"Nothing","",[],true,false,false,false,0,null,null,false,null,null,false,null,null,false,50,[],"","",""],"event_data":null,"fn_index":231,"session_hash":""}}')
print(conn.recv())
print(conn.recv())
print(conn.recv())
print(conn.recv())
photo = f"{url_sd2}" + str(json.loads(conn.recv())['output']['data'][0][0]["name"])
return photo
except:
return None
css = """
#generate {
width: 100%;
background: #e253dd !important;
border: none;
border-radius: 50px;
outline: none !important;
color: white;
}
#generate:hover {
background: #de6bda !important;
outline: none !important;
color: #fff;
}
footer {visibility: hidden !important;}
"""
with gr.Blocks(css=css) as demo:
with gr.Tab("Базовые настройки"):
with gr.Row():
prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
with gr.Row():
task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Модель нейросети:", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL',
'Juggernaut XL', 'DreamShaper XL',
'SDXL Niji', 'Cinemax SDXL', 'NightVision XL'])
with gr.Tab("Расширенные настройки"):
with gr.Row():
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
with gr.Row():
sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
"Euler", "Euler a", "Heun", "DPM++ 2M", "DPM++ SDE", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
with gr.Row():
steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
with gr.Row():
cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
with gr.Row():
seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
with gr.Column():
text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
with gr.Column(scale=2):
image_output = gr.Image(show_label=True, label='Результат:', elem_id='image_output')
text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output)
demo.queue(concurrency_count=12)
demo.launch() |