File size: 9,301 Bytes
22d4eb1
 
 
 
 
 
 
 
 
7dd17d6
 
 
9b9ddaf
22d4eb1
 
 
 
 
9b9ddaf
 
 
 
 
 
 
22d4eb1
9b9ddaf
22d4eb1
 
 
 
 
 
 
 
 
7dd17d6
557ed44
22d4eb1
 
ecd8121
22d4eb1
7dd17d6
 
 
9bfa07c
7dd17d6
 
 
 
 
 
 
 
 
 
22d4eb1
ecd8121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22d4eb1
ee76b4a
 
 
 
 
 
 
bd92e40
 
 
ee76b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22d4eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee76b4a
 
 
 
22d4eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee76b4a
 
 
 
e78ce53
ee76b4a
 
 
 
e78ce53
ee76b4a
e78ce53
ee76b4a
22d4eb1
 
ee76b4a
 
22d4eb1
ee76b4a
 
 
 
22d4eb1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64
import re


def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
    result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed}
    print(result)
    try:
        language = detect(prompt)
        if language == 'ru':
            prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
            print(prompt)
    except:
        pass

    prompt = re.sub(r'[^a-zA-Zа-яА-Я\s]', '', prompt)
    
    cfg = int(cfg_scale)
    steps = int(steps)
    seed = int(seed)

    width = 1024
    height = 1024
    url_sd1 = os.getenv("url_sd1")
    url_sd2 = os.getenv("url_sd2")
    url_sd3 = os.getenv("url_sd3")
    url_sd4 = os.getenv("url_sd4")
    
    print(task)
    
    try:
        print('n_1')
        with closing(create_connection(f"{url_sd3}", timeout=60)) as conn:
            conn.send('{"fn_index":3,"session_hash":""}')
            conn.send(f'{{"data":["{prompt}, 4k photo","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",7.5,"(No style)"],"event_data":null,"fn_index":3,"session_hash":""}}')
            while True:
                status = json.loads(conn.recv())['msg']
                if status == 'estimation':
                    continue
                if status == 'process_starts':
                    break
            photo = json.loads(conn.recv())['output']['data'][0][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo
    except:
        print("n_2")
        with closing(create_connection(f"{url_sd4}", timeout=60)) as conn:
            conn.send('{"fn_index":0,"session_hash":""}')
            conn.send(f'{{"data":["{prompt}","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry","dreamshaperXL10_alpha2.safetensors [c8afe2ef]",30,"DPM++ 2M Karras",7,1024,1024,-1],"event_data":null,"fn_index":0,"session_hash":""}}')
            conn.recv()
            conn.recv()
            conn.recv()
            conn.recv()
            photo = json.loads(conn.recv())['output']['data'][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo


def flipp():
    if task == 'Stable Diffusion XL 1.0':
        model = 'sd_xl_base_1.0'
    if task == 'Crystal Clear XL':
        model = '[3d] crystalClearXL_ccxl_97637'
    if task == 'Juggernaut XL':
        model = '[photorealistic] juggernautXL_version2_113240'
    if task == 'DreamShaper XL':
        model = '[base model] dreamshaperXL09Alpha_alpha2Xl10_91562'
    if task == 'SDXL Niji':
        model = '[midjourney] sdxlNijiV51_sdxlNijiV51_112807'
    if task == 'Cinemax SDXL':
        model = '[movie] cinemaxAlphaSDXLCinema_alpha1_107473'
    if task == 'NightVision XL':
        model = '[photorealistic] nightvisionXLPhotorealisticPortrait_beta0702Bakedvae_113098'
        
    print("n_3")
    negative = negative_prompt
    
    try:
        with closing(create_connection(f"{url_sd1}")) as conn:
            conn.send('{"fn_index":231,"session_hash":""}')
            conn.send(f'{{"data":["task()","{prompt}","{negative}",[],{steps},"{sampler}",false,false,1,1,{cfg},{seed},-1,0,0,0,false,{width},{height},false,0.7,2,"Lanczos",0,0,0,"Use same sampler","","",[],"None",true,"{model}","Automatic",null,null,null,false,false,"positive","comma",0,false,false,"","Seed","",[],"Nothing","",[],"Nothing","",[],true,false,false,false,0,null,null,false,null,null,false,null,null,false,50,[],"","",""],"event_data":null,"fn_index":231,"session_hash":""}}')
            print(conn.recv())
            print(conn.recv())
            print(conn.recv())
            print(conn.recv())
            photo = f"{url_sd2}" + str(json.loads(conn.recv())['output']['data'][0][0]["name"])
        return photo
    except:
        return None



def mirror(image_output, scale_by, method, gfpgan, codeformer):

    url_up = os.getenv("url_up")
    url_up_f = os.getenv("url_up_f")

    print(url_up)
    print(url_up_f)

    scale_by = int(scale_by)
    gfpgan = int(gfpgan)
    codeformer = int(codeformer)
    
    with open(image_output, "rb") as image_file:
        encoded_string2 = base64.b64encode(image_file.read())
        encoded_string2 = str(encoded_string2).replace("b'", '')

    encoded_string2 = "data:image/png;base64," + encoded_string2
    data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,512,512,None,method,"None",1,False,[],"",""],"session_hash":""}
    print(data)
    r = requests.post(f"{url_up}", json=data, timeout=100)
    print(r.text)
    ph = f"{url_up_f}" + str(r.json()['data'][0][0]['name'])
    return ph

css = """
#generate {
    width: 100%;
    background: #e253dd !important;
    border: none;
    border-radius: 50px;
    outline: none !important;
    color: white;
}
#generate:hover {
    background: #de6bda !important;
    outline: none !important;
    color: #fff;
    }
footer {visibility: hidden !important;}

#image_output {
height: 100% !important;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Tab("Базовые настройки"):
        with gr.Row():
            prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
        with gr.Row():
            task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Модель нейросети:", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL', 
                                                                                                              'Juggernaut XL', 'DreamShaper XL',
                                                                                                              'SDXL Niji', 'Cinemax SDXL', 'NightVision XL'])
    with gr.Tab("Расширенные настройки"):
        with gr.Row():
            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
        with gr.Row():
            sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
                "Euler", "Euler a", "Heun", "DPM++ 2M", "DPM++ SDE", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
        with gr.Row():
            steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
        with gr.Row():
            cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
        with gr.Row():
            seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
    
    with gr.Tab("Настройки апскейлинга"):
        with gr.Column():
            with gr.Row():
                scale_by = gr.Number(show_label=True, label="Во сколько раз увеличить:", minimum=1, maximum=2, value=2, step=1)
            with gr.Row():
                method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Алгоритм увеличения", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"])
        with gr.Column():
            with gr.Row():
                gfpgan = gr.Slider(show_label=True, label="Эффект GFPGAN (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
            with gr.Row():
                codeformer = gr.Slider(show_label=True, label="Эффект CodeFormer (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
    
    with gr.Column():
        text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
    with gr.Column():
        image_output = gr.Image(show_download_button=True, interactive=False, label='Результат:', elem_id='image_output', type='filepath')
        text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output)
        
        img2img_b = gr.Button("Увеличить изображение", variant='secondary')
        image_i2i = gr.Image(show_label=True, label='Увеличенное изображение:')
        img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i)
    
demo.queue(concurrency_count=12)
demo.launch()