sdxl2 / app.py
lalashechka's picture
Update app.py
750ef61 verified
raw
history blame
13.1 kB
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64
import re
from gradio_client import Client
def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed}
print(result)
try:
language = detect(prompt)
if language == 'ru':
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(prompt)
except:
pass
prompt = re.sub(r'[^a-zA-Zа-яА-Я\s]', '', prompt)
cfg = int(cfg_scale)
steps = int(steps)
seed = int(seed)
width = 1024
height = 1024
url_sd1 = os.getenv("url_sd1")
url_sd2 = os.getenv("url_sd2")
url_sd3 = os.getenv("url_sd3")
url_sd4 = os.getenv("url_sd4")
print("--3-->", url_sd3)
print("--4-->", url_sd4)
url_sd5 = os.getenv("url_sd5")
url_sd6 = os.getenv("url_sd6")
hf_token = os.getenv("hf_token")
if task == "Playground v2":
playground = str(os.getenv("playground"))
with closing(create_connection("wss://ashrafb-arpr.hf.space/queue/join", timeout=60)) as conn:
conn.send('{"fn_index":0,"session_hash":""}')
conn.send(f'{{"fn_index":0,"data":["{prompt}"],"session_hash":""}}')
conn.recv()
conn.recv()
conn.recv()
conn.recv()
a = conn.recv()
print(">> A:", a)
photo = json.loads(a)['output']['data'][0]
photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
return photo
if task == "Artigen v3":
artigen = str(os.getenv("artigen"))
with closing(create_connection("wss://ashrafb-arv3s.hf.space/queue/join", timeout=60)) as conn:
conn.send('{"fn_index":0,"session_hash":""}')
conn.send(f'{{"fn_index":0,"data":["{prompt}", 0, "No style"],"session_hash":""}}')
conn.recv()
conn.recv()
conn.recv()
conn.recv()
a = conn.recv()
print(">> A:", a)
photo = json.loads(a)['output']['data'][0]
photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
return photo
try:
with closing(create_connection(f"{url_sd3}", timeout=60)) as conn:
conn.send('{"fn_index":3,"session_hash":""}')
conn.send(f'{{"data":["{prompt}, 4k photo","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",7.5,"(No style)"],"event_data":null,"fn_index":3,"session_hash":""}}')
c = 0
while c < 60:
status = json.loads(conn.recv())['msg']
if status == 'estimation':
c += 1
time.sleep(1)
continue
if status == 'process_starts':
break
photo = json.loads(conn.recv())['output']['data'][0][0]
photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
return photo
#data = {"inputs":f"{prompt}, 4k photo","options":{"negative_prompt":"[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry","width":1024,"height":1024,"guidance_scale":7,"num_inference_steps":35}}
#response = requests.post(f'{url_sd5}', json=data)
#print(response.text)
#print(response.json()['image']['file_name'])
#file_name = response.json()['image']['file_name']
#photo = f"{url_sd6}{file_name}.png"
#return photo
except:
with closing(create_connection(f"{url_sd4}", timeout=60)) as conn:
conn.send('{"fn_index":0,"session_hash":""}')
conn.send(f'{{"data":["{prompt}","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry","dreamshaperXL10_alpha2.safetensors [c8afe2ef]",30,"DPM++ 2M Karras",7,1024,1024,-1],"event_data":null,"fn_index":0,"session_hash":""}}')
conn.recv()
conn.recv()
conn.recv()
conn.recv()
photo = json.loads(conn.recv())['output']['data'][0]
photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
return photo
#except:
# try:
# client = Client("https://prodia-sdxl-stable-diffusion-xl.hf.space")
# result = client.predict(prompt,"[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry","sd_xl_base_1.0.safetensors [be9edd61]",25,"DPM++ 2M Karras",7,1024,1024,-1,fn_index=0)
# return result
# except:
# print("n_2")
# print(url_sd4)
# with closing(create_connection(f"{url_sd4}", timeout=60)) as conn:
# conn.send('{"fn_index":0,"session_hash":""}')
# conn.send(f'{{"data":["{prompt}","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry","dreamshaperXL10_alpha2.safetensors [c8afe2ef]",30,"DPM++ 2M Karras",7,1024,1024,-1],"event_data":null,"fn_index":0,"session_hash":""}}')
# conn.recv()
# conn.recv()
# conn.recv()
# conn.recv()
# photo = json.loads(conn.recv())['output']['data'][0]
# photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
# photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
# return photo
def flipp():
if task == 'Stable Diffusion XL 1.0':
model = 'sd_xl_base_1.0'
if task == 'Crystal Clear XL':
model = '[3d] crystalClearXL_ccxl_97637'
if task == 'Juggernaut XL':
model = '[photorealistic] juggernautXL_version2_113240'
if task == 'DreamShaper XL':
model = '[base model] dreamshaperXL09Alpha_alpha2Xl10_91562'
if task == 'SDXL Niji':
model = '[midjourney] sdxlNijiV51_sdxlNijiV51_112807'
if task == 'Cinemax SDXL':
model = '[movie] cinemaxAlphaSDXLCinema_alpha1_107473'
if task == 'NightVision XL':
model = '[photorealistic] nightvisionXLPhotorealisticPortrait_beta0702Bakedvae_113098'
print("n_3")
negative = negative_prompt
try:
with closing(create_connection(f"{url_sd1}")) as conn:
conn.send('{"fn_index":231,"session_hash":""}')
conn.send(f'{{"data":["task()","{prompt}","{negative}",[],{steps},"{sampler}",false,false,1,1,{cfg},{seed},-1,0,0,0,false,{width},{height},false,0.7,2,"Lanczos",0,0,0,"Use same sampler","","",[],"None",true,"{model}","Automatic",null,null,null,false,false,"positive","comma",0,false,false,"","Seed","",[],"Nothing","",[],"Nothing","",[],true,false,false,false,0,null,null,false,null,null,false,null,null,false,50,[],"","",""],"event_data":null,"fn_index":231,"session_hash":""}}')
print(conn.recv())
print(conn.recv())
print(conn.recv())
print(conn.recv())
photo = f"{url_sd2}" + str(json.loads(conn.recv())['output']['data'][0][0]["name"])
return photo
except:
return None
def mirror(image_output, scale_by, method, gfpgan, codeformer):
url_up = os.getenv("url_up")
url_up_f = os.getenv("url_up_f")
print("~~ up", url_up)
print("~~ f", url_up_f)
scale_by = int(scale_by)
gfpgan = int(gfpgan)
codeformer = int(codeformer)
with open(image_output, "rb") as image_file:
encoded_string2 = base64.b64encode(image_file.read())
encoded_string2 = str(encoded_string2).replace("b'", '')
encoded_string2 = "data:image/png;base64," + encoded_string2
data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,512,512,None,method,"None",1,False,[],"",""],"session_hash":""}
print(data)
r = requests.post(f"{url_up}", json=data, timeout=100)
print(r.text)
ph = f"{url_up_f}" + str(r.json()['data'][0][0]['name'])
return ph
css = """
#generate {
width: 100%;
background: #e253dd !important;
border: none;
border-radius: 50px;
outline: none !important;
color: white;
}
#generate:hover {
background: #de6bda !important;
outline: none !important;
color: #fff;
}
footer {visibility: hidden !important;}
#image_output {
height: 100% !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Tab("Базовые настройки"):
with gr.Row():
prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
with gr.Row():
task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Модель нейросети:", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL',
'Juggernaut XL', 'DreamShaper XL',
'SDXL Niji', 'Cinemax SDXL', 'NightVision XL',
'Playground v2', 'Artigen v3'])
with gr.Tab("Расширенные настройки"):
with gr.Row():
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
with gr.Row():
sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
"Euler", "Euler a", "Heun", "DPM++ 2M", "DPM++ SDE", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
with gr.Row():
steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
with gr.Row():
cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
with gr.Row():
seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
with gr.Tab("Настройки апскейлинга"):
with gr.Column():
with gr.Row():
scale_by = gr.Number(show_label=True, label="Во сколько раз увеличить:", minimum=1, maximum=2, value=2, step=1)
with gr.Row():
method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Алгоритм увеличения", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"])
with gr.Column():
with gr.Row():
gfpgan = gr.Slider(show_label=True, label="Эффект GFPGAN (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
with gr.Row():
codeformer = gr.Slider(show_label=True, label="Эффект CodeFormer (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
with gr.Column():
text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
with gr.Column():
image_output = gr.Image(show_download_button=True, interactive=False, label='Результат:', elem_id='image_output', type='filepath')
text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output)
img2img_b = gr.Button("Увеличить изображение", variant='secondary')
image_i2i = gr.Image(show_label=True, label='Увеличенное изображение:')
img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i)
demo.queue(concurrency_count=24)
demo.launch()