File size: 10,931 Bytes
e2425fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd6788
e2425fb
 
 
5dd6788
e2425fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64
import re
from gradio_client import Client
from fake_useragent import UserAgent
import random


def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
    result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed}
    print(result)
    try:
        language = detect(prompt)
        if language == 'ru':
            prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
            print(prompt)
    except:
        pass

    prompt = re.sub(r'[^a-zA-Zа-яА-Я\s]', '', prompt)
    
    cfg = int(cfg_scale)
    steps = int(steps)
    seed = int(seed)

    width = 1024
    height = 1024
    #url_sd1 = os.getenv("url_sd1")
    #url_sd2 = os.getenv("url_sd2")
    
    #url_sd3 = os.getenv("url_sd3")
    #url_sd4 = os.getenv("url_sd4")

    print("--3-->", url_sd3)
    print("--4-->", url_sd4)
    
    #url_sd5 = os.getenv("url_sd5")
    #url_sd6 = os.getenv("url_sd6")
    #hf_token = os.getenv("hf_token")
    if task == "Playground v2":
        playground = str(os.getenv("playground"))
        with closing(create_connection("wss://ashrafb-arpr.hf.space/queue/join", timeout=60)) as conn:
            conn.send('{"fn_index":0,"session_hash":""}')
            conn.send(f'{{"fn_index":0,"data":["{prompt}"],"session_hash":""}}')
            conn.recv()
            conn.recv()
            conn.recv()
            conn.recv()
            a = conn.recv()
            print(">> A:", a)
            photo = json.loads(a)['output']['data'][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo
            
    if task == "Artigen v3":
        artigen = str(os.getenv("artigen"))
        with closing(create_connection("wss://ashrafb-arv3s.hf.space/queue/join", timeout=60)) as conn:
            conn.send('{"fn_index":0,"session_hash":""}')
            conn.send(f'{{"fn_index":0,"data":["{prompt}", 0, "No style"],"session_hash":""}}')
            conn.recv()
            conn.recv()
            conn.recv()
            conn.recv()
            a = conn.recv()
            print(">> A:", a)
            photo = json.loads(a)['output']['data'][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo
        
    try:
        ua = UserAgent()
        headers = {
            'authority': 'ehristoforu-dalle-3-xl-lora-v2.hf.space',
            'accept': 'text/event-stream',
            'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
            'cache-control': 'no-cache',
            'referer': 'https://ehristoforu-dalle-3-xl-lora-v2.hf.space/?__theme=light',
            'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'user-agent': f'{ua.random}'
        }
        client = Client("ehristoforu/dalle-3-xl-lora-v2", headers=headers)
        result = client.predict(prompt,"(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",True,0,1024,1024,6,True, api_name='/run')
        return result[0][0]['image']
    except:
        try:
            ua = UserAgent()
            headers = {
                'authority': 'nymbo-sd-xl.hf.space',
                'accept': 'text/event-stream',
                'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                'cache-control': 'no-cache',
                'referer': 'https://nymbo-sd-xl.hf.space/?__theme=light',
                'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"Windows"',
                'sec-fetch-dest': 'empty',
                'sec-fetch-mode': 'cors',
                'sec-fetch-site': 'same-origin',
                'user-agent': f'{ua.random}'
            }
            client = Client("Nymbo/SD-XL", headers=headers)
            result = client.predict(prompt,negative_prompt,"","",True,False,False,0,1024,1024,7,1,25,25,False,api_name="/run")
            return result
        except:
            ua = UserAgent()
            headers = {
                'authority': 'radames-real-time-text-to-image-sdxl-lightning.hf.space',
                'accept': 'text/event-stream',
                'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                'cache-control': 'no-cache',
                'referer': 'https://radames-real-time-text-to-image-sdxl-lightning.hf.space/?__theme=light',
                'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"Windows"',
                'sec-fetch-dest': 'empty',
                'sec-fetch-mode': 'cors',
                'sec-fetch-site': 'same-origin',
                'user-agent': f'{ua.random}'
            }
            client = Client("radames/Real-Time-Text-to-Image-SDXL-Lightning", headers=headers)
            result = client.predict(prompt, [], 0, random.randint(1, 999999), fn_index=0)
            return result


def mirror(image_output, scale_by, method, gfpgan, codeformer):

    url_up = os.getenv("url_up")
    url_up_f = os.getenv("url_up_f")

    print("~~ up", url_up)
    print("~~ f", url_up_f)

    scale_by = int(scale_by)
    gfpgan = int(gfpgan)
    codeformer = int(codeformer)
    
    with open(image_output, "rb") as image_file:
        encoded_string2 = base64.b64encode(image_file.read())
        encoded_string2 = str(encoded_string2).replace("b'", '')

    encoded_string2 = "data:image/png;base64," + encoded_string2
    data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,512,512,None,method,"None",1,False,[],"",""],"session_hash":""}
    print(data)
    r = requests.post(f"{url_up}", json=data, timeout=100)
    print(r.text)
    ph = f"{url_up_f}" + str(r.json()['data'][0][0]['name'])
    return ph

css = """
#generate {
    width: 100%;
    background: #e253dd !important;
    border: none;
    border-radius: 50px;
    outline: none !important;
    color: white;
}
#generate:hover {
    background: #de6bda !important;
    outline: none !important;
    color: #fff;
    }
footer {visibility: hidden !important;}
#image_output {
height: 100% !important;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Tab("Базовые настройки"):
        with gr.Row():
            prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
        with gr.Row():
            task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Модель нейросети:", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL', 
                                                                                                              'Juggernaut XL', 'DreamShaper XL',
                                                                                                              'SDXL Niji', 'Cinemax SDXL', 'NightVision XL',
                                                                                                              'Playground v2', 'Artigen v3'])
    with gr.Tab("Расширенные настройки"):
        with gr.Row():
            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
        with gr.Row():
            sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
                "Euler", "Euler a", "Heun", "DPM++ 2M", "DPM++ SDE", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
        with gr.Row():
            steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
        with gr.Row():
            cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
        with gr.Row():
            seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
    
    with gr.Tab("Настройки апскейлинга"):
        with gr.Column():
            with gr.Row():
                scale_by = gr.Number(show_label=True, label="Во сколько раз увеличить:", minimum=1, maximum=2, value=2, step=1)
            with gr.Row():
                method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Алгоритм увеличения", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"])
        with gr.Column():
            with gr.Row():
                gfpgan = gr.Slider(show_label=True, label="Эффект GFPGAN (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
            with gr.Row():
                codeformer = gr.Slider(show_label=True, label="Эффект CodeFormer (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
    
    with gr.Column():
        text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
    with gr.Column():
        image_output = gr.Image(show_download_button=True, interactive=False, label='Результат:', elem_id='image_output', type='filepath')
        text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output, concurrency_limit=10)
        
        img2img_b = gr.Button("Увеличить изображение", variant='secondary')
        image_i2i = gr.Image(show_label=True, label='Увеличенное изображение:')
        img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i, concurrency_limit=10)
    
demo.launch()