lambdabrendan's picture
Remove alternate GPU vendors from drop-down - leaving logic incase we ever offer AMD
eef78f7 verified
raw
history blame
8.82 kB
import streamlit as st
from streamlit_datalist import stDatalist
import pandas as pd
from utils import extract_from_url, get_model, calculate_memory
import plotly.express as px
import numpy as np
import gc
from huggingface_hub import login
st.set_page_config(page_title='Lambda LLM VRAM Calculator', layout="wide", initial_sidebar_state="expanded")
model_list = [
"mistralai/Mistral-7B-v0.1",
"mistralai/Mistral-7B-Instruct-v0.1",
"ehartford/samantha-mistral-7b",
"SkunkworksAI/Mistralic-7B-1",
"microsoft/phi-1_5",
"PY007/TinyLlama-1.1B-intermediate-step-480k-1T",
"codellama/CodeLlama-7b-hf",
"codellama/CodeLlama-13b-hf",
"codellama/CodeLlama-34b-hf",
"Phind/Phind-CodeLlama-34B-v2",
"WizardLM/WizardCoder-Python-34B-V1.0",
"TheBloke/Llama-2-7B-fp16",
"TheBloke/Llama-2-13B-fp16",
"TheBloke/Llama-2-70B-fp16",
"Gryphe/MythoMax-L2-13b",
"uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b",
"lmsys/vicuna-7b-v1.5",
"lmsys/vicuna-13b-v1.5-16k",
"lmsys/longchat-7b-v1.5-32k",
"tiiuae/falcon-7B-Instruct",
"tiiuae/falcon-7B",
"tiiuae/falcon-40B",
"tiiuae/falcon-40B-Instruct",
"tiiuae/falcon-180B",
"tiiuae/falcon-180B-Chat",
]
st.title("Lambda LLM VRAM Calculator")
percentage_width_main = 80
st.markdown(
f"""<style>
.appview-container .main .block-container{{
max-width: {percentage_width_main}%;}}
</style>
""",
unsafe_allow_html=True,
)
@st.cache_resource()
def cache_model_list():
model_list_info = {}
for model_name in model_list:
if not "tiiuae/falcon" in model_name: # Exclude Falcon models
model = get_model(model_name, library="transformers", access_token="")
model_list_info[model_name] = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"])
return model_list_info
@st.cache_resource
def get_gpu_specs():
return pd.read_csv("data/gpu_specs.csv")
# @st.cache_resource
# def get_mistralai_table():
# model = get_model("mistralai/Mistral-7B-v0.1", library="transformers", access_token="")
# return calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"])
def show_gpu_info(info, trainable_params=0, vendor=""):
for var in ['Inference', 'Full Training Adam', 'LoRa Fine-tuning']:
_info = info.loc[var]
if vendor != "Apple":
if _info['Number of GPUs'] >= 3:
func = st.error
icon = "⛔"
elif _info['Number of GPUs'] == 2:
func = st.warning
icon = "⚠️"
else:
func = st.success
icon = "✅"
msg = f"You require **{_info['Number of GPUs']}** GPUs for **{var}**"
if var == 'LoRa Fine-tuning':
msg += f" ({trainable_params}%)"
else:
if _info['Number of GPUs']==1:
msg = f"You can run **{var}**"
func = st.success
icon = "✅"
else:
msg = f"You cannot run **{var}**"
func = st.error
icon = "⛔"
func(msg, icon=icon)
def get_name(index):
row = gpu_specs.iloc[index]
return f"{row['Product Name']} ({row['RAM (GB)']} GB, {row['Year']})"
def custom_ceil(a, precision=0):
return np.round(a + 0.5 * 10**(-precision), precision)
gpu_specs = get_gpu_specs()
model_list_info = cache_model_list()
_, col, _ = st.columns([1,3,1])
with col.expander("Information", expanded=True):
st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/)
- Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co/spaces/hf-accelerate/model-memory-usage)
using `transformers` library
- Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/),
where is estimated as """)
st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""")
st.markdown("""- For LoRa Fine-tuning, This assumes a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""")
st.latex(r"\text{Memory}_\text{LoRa} \approx \text{Model Size} + \left(\text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2")
access_token = st.sidebar.text_input("Access token")
if access_token:
login(token=access_token)
#model_name = st.sidebar.text_input("Model name", value="mistralai/Mistral-7B-v0.1")
with st.sidebar.container():
model_name = stDatalist("Model name (Press Enter to apply)", model_list, index=0)
if not model_name:
st.info("Please enter a model name")
st.stop()
model_name = extract_from_url(model_name)
if model_name not in st.session_state:
if 'actual_model' in st.session_state:
del st.session_state[st.session_state['actual_model']]
del st.session_state['actual_model']
gc.collect()
if model_name in model_list_info.keys():
st.session_state[model_name] = model_list_info[model_name]
else:
model = get_model(model_name, library="transformers", access_token=access_token)
st.session_state[model_name] = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"])
del model
gc.collect()
st.session_state['actual_model'] = model_name
gpu_vendor = st.sidebar.selectbox("GPU Vendor", ["NVIDIA"])
# year = st.sidebar.selectbox("Filter by Release Year", list(range(2014, 2024))[::-1], index=None)
gpu_info = gpu_specs[gpu_specs['Vendor'] == gpu_vendor].sort_values('Product Name')
# if year:
# gpu_info = gpu_info[gpu_info['Year'] == year]
min_ram = gpu_info['RAM (GB)'].min()
max_ram = gpu_info['RAM (GB)'].max()
ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (10.0, 40.0), step=0.5)
gpu_info = gpu_info[gpu_info["RAM (GB)"].between(ram[0], ram[1])]
if len(gpu_info) == 0:
st.sidebar.error(f"**{gpu_vendor}** has no GPU in that RAM range")
st.stop()
gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), format_func=lambda x : gpu_specs.iloc[x]['Product Name'])
gpu_spec = gpu_specs.iloc[gpu]
gpu_spec.name = 'INFO'
lora_pct = st.sidebar.slider("LoRa % trainable parameters", 0.1, 100.0, 2.0, step=0.1)
st.sidebar.dataframe(gpu_spec.T.astype(str))
memory_table = pd.DataFrame(st.session_state[model_name]).set_index('dtype')
memory_table['LoRA Fine-Tuning (GB)'] = (memory_table["Total Size (GB)"] +
(memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2
_memory_table = memory_table.copy()
memory_table = memory_table.round(2).T
_memory_table /= gpu_spec['RAM (GB)']
_memory_table = _memory_table.apply(np.ceil).astype(int).drop(columns=['Parameters (Billion)', 'Total Size (GB)'])
_memory_table.columns = ['Inference', 'Full Training Adam', 'LoRa Fine-tuning']
_memory_table = _memory_table.stack().reset_index()
_memory_table.columns = ['dtype', 'Variable', 'Number of GPUs']
col1, col2 = st.columns([1,1.3])
if gpu_vendor == "Apple":
col.warning("""For M1/M2 Apple chips, PyTorch uses [Metal Performance Shaders (MPS)](https://huggingface.co/docs/accelerate/usage_guides/mps) as backend.\\
Remember that Apple M1/M2 chips share memory between CPU and GPU.""", icon="⚠️")
with col1:
st.write(f"#### [{model_name}](https://huggingface.co/{model_name}) ({custom_ceil(memory_table.iloc[3,0],1):.1f}B)")
dtypes = memory_table.columns.tolist()[::-1]
tabs = st.tabs(dtypes)
for dtype, tab in zip(dtypes, tabs):
with tab:
if dtype in ["int4", "int8"]:
_dtype = dtype.replace("int", "")
st.markdown(f"`int{_dtype}` refers to models in `GPTQ-{_dtype}bit`, `AWQ-{_dtype}bit` or `Q{_dtype}_0 GGUF/GGML`")
info = _memory_table[_memory_table['dtype'] == dtype].set_index('Variable')
show_gpu_info(info, lora_pct, gpu_vendor)
st.write(memory_table.iloc[[0, 1, 2, 4]])
with col2:
extra = ""
if gpu_vendor == "Apple":
st.warning("This graph is irrelevant for M1/M2 chips as they can't run in parallel.", icon="⚠️")
extra = "⚠️"
num_colors= 4
colors = [px.colors.sequential.RdBu[int(i*(len(px.colors.sequential.RdBu)-1)/(num_colors-1))] for i in range(num_colors)]
fig = px.bar(_memory_table, x='Variable', y='Number of GPUs', color='dtype', barmode='group', color_discrete_sequence=colors)
fig.update_layout(title=dict(text=f"{extra} Number of GPUs required for<br> {get_name(gpu)}", font=dict(size=25))
, xaxis_tickfont_size=14, yaxis_tickfont_size=16, yaxis_dtick='1')
st.plotly_chart(fig, use_container_width=True)