File size: 1,799 Bytes
869e1b8
f5c0c01
21d27ae
f5c0c01
 
 
21d27ae
 
f5c0c01
 
 
 
21d27ae
f5c0c01
 
 
 
42de6bd
f5c0c01
 
42de6bd
 
 
 
 
 
 
 
 
 
 
 
 
f5c0c01
 
42de6bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from typing import Dict, Any, Iterable
from sklearn.feature_extraction.text import TfidfVectorizer
import wordcloud
from pydantic import BaseModel, Field
import numpy as np
import PIL


class WordCloudExtractor(BaseModel):
    max_words: int = 50
    wordcloud_params: Dict[str, Any] = Field(default_factory=dict)
    tfidf_params: Dict[str, Any] = Field(default_factory=lambda: {"stop_words": "english"})

    def extract_wordcloud_image(self, texts) -> PIL.Image.Image:
        frequencies = self._extract_frequencies(texts, self.max_words, tfidf_params=self.tfidf_params)
        wc = wordcloud.WordCloud(**self.wordcloud_params).generate_from_frequencies(frequencies)
        return wc.to_image()

    @classmethod
    def _extract_frequencies(cls, texts, max_words=100, tfidf_params: dict={}) -> Dict[str, float]:
        """
        Extract word frequencies from a corpus using TF-IDF vectorization
        and generate word cloud frequencies.
        
        Args:
            texts: List of text documents
            max_features: Maximum number of words to include
            
        Returns:
            Dictionary of word frequencies suitable for WordCloud
        """
        # Initialize TF-IDF vectorizer
        tfidf = TfidfVectorizer(
            max_features=max_words,
            **tfidf_params
        )
        
        # Fit and transform the texts
        tfidf_matrix = tfidf.fit_transform(texts)
        
        # Get feature names (words)
        feature_names = tfidf.get_feature_names_out()
        
        # Calculate mean TF-IDF scores across documents
        mean_tfidf = np.array(tfidf_matrix.mean(axis=0)).flatten()
        
        # Create frequency dictionary
        frequencies = dict(zip(feature_names, mean_tfidf))
        
        return frequencies