File size: 10,744 Bytes
1d5604f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
#!/usr/bin/env python3
# coding=utf-8
import pickle
import torch
from data.parser.from_mrp.node_centric_parser import NodeCentricParser
from data.parser.from_mrp.labeled_edge_parser import LabeledEdgeParser
from data.parser.from_mrp.sequential_parser import SequentialParser
from data.parser.from_mrp.evaluation_parser import EvaluationParser
from data.parser.from_mrp.request_parser import RequestParser
from data.field.edge_field import EdgeField
from data.field.edge_label_field import EdgeLabelField
from data.field.field import Field
from data.field.mini_torchtext.field import Field as TorchTextField
from data.field.label_field import LabelField
from data.field.anchored_label_field import AnchoredLabelField
from data.field.nested_field import NestedField
from data.field.basic_field import BasicField
from data.field.bert_field import BertField
from data.field.anchor_field import AnchorField
from data.batch import Batch
def char_tokenize(word):
return [c for i, c in enumerate(word)] # if i < 10 or len(word) - i <= 10]
class Collate:
def __call__(self, batch):
batch.sort(key=lambda example: example["every_input"][0].size(0), reverse=True)
return Batch.build(batch)
class Dataset:
def __init__(self, args, verbose=True):
self.verbose = verbose
self.sos, self.eos, self.pad, self.unk = "<sos>", "<eos>", "<pad>", "<unk>"
self.bert_input_field = BertField()
self.scatter_field = BasicField()
self.every_word_input_field = Field(lower=True, init_token=self.sos, eos_token=self.eos, batch_first=True, include_lengths=True)
char_form_nesting = TorchTextField(tokenize=char_tokenize, init_token=self.sos, eos_token=self.eos, batch_first=True)
self.char_form_field = NestedField(char_form_nesting, include_lengths=True)
self.label_field = LabelField(preprocessing=lambda nodes: [n["label"] for n in nodes])
self.anchored_label_field = AnchoredLabelField()
self.id_field = Field(batch_first=True, tokenize=lambda x: [x])
self.edge_presence_field = EdgeField()
self.edge_label_field = EdgeLabelField()
self.anchor_field = AnchorField()
self.source_anchor_field = AnchorField()
self.target_anchor_field = AnchorField()
self.token_interval_field = BasicField()
self.load_dataset(args)
def log(self, text):
if not self.verbose:
return
print(text, flush=True)
def load_state_dict(self, args, d):
for key, value in d["vocabs"].items():
getattr(self, key).vocab = pickle.loads(value)
def state_dict(self):
return {
"vocabs": {key: pickle.dumps(value.vocab) for key, value in self.__dict__.items() if hasattr(value, "vocab")}
}
def load_sentences(self, sentences, args):
dataset = RequestParser(
sentences, args,
fields={
"input": [("every_input", self.every_word_input_field), ("char_form_input", self.char_form_field)],
"bert input": ("input", self.bert_input_field),
"to scatter": ("input_scatter", self.scatter_field),
"token anchors": ("token_intervals", self.token_interval_field),
"id": ("id", self.id_field),
},
)
self.every_word_input_field.build_vocab(dataset, min_freq=1, specials=[self.pad, self.unk, self.sos, self.eos])
self.id_field.build_vocab(dataset, min_freq=1, specials=[])
return torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=Collate())
def load_dataset(self, args):
parser = {
"sequential": SequentialParser,
"node-centric": NodeCentricParser,
"labeled-edge": LabeledEdgeParser
}[args.graph_mode]
train = parser(
args, "training",
fields={
"input": [("every_input", self.every_word_input_field), ("char_form_input", self.char_form_field)],
"bert input": ("input", self.bert_input_field),
"to scatter": ("input_scatter", self.scatter_field),
"nodes": ("labels", self.label_field),
"anchored labels": ("anchored_labels", self.anchored_label_field),
"edge presence": ("edge_presence", self.edge_presence_field),
"edge labels": ("edge_labels", self.edge_label_field),
"anchor edges": ("anchor", self.anchor_field),
"source anchor edges": ("source_anchor", self.source_anchor_field),
"target anchor edges": ("target_anchor", self.target_anchor_field),
"token anchors": ("token_intervals", self.token_interval_field),
"id": ("id", self.id_field),
},
filter_pred=lambda example: len(example.input) <= 256,
)
val = parser(
args, "validation",
fields={
"input": [("every_input", self.every_word_input_field), ("char_form_input", self.char_form_field)],
"bert input": ("input", self.bert_input_field),
"to scatter": ("input_scatter", self.scatter_field),
"nodes": ("labels", self.label_field),
"anchored labels": ("anchored_labels", self.anchored_label_field),
"edge presence": ("edge_presence", self.edge_presence_field),
"edge labels": ("edge_labels", self.edge_label_field),
"anchor edges": ("anchor", self.anchor_field),
"source anchor edges": ("source_anchor", self.source_anchor_field),
"target anchor edges": ("target_anchor", self.target_anchor_field),
"token anchors": ("token_intervals", self.token_interval_field),
"id": ("id", self.id_field),
},
)
test = EvaluationParser(
args,
fields={
"input": [("every_input", self.every_word_input_field), ("char_form_input", self.char_form_field)],
"bert input": ("input", self.bert_input_field),
"to scatter": ("input_scatter", self.scatter_field),
"token anchors": ("token_intervals", self.token_interval_field),
"id": ("id", self.id_field),
},
)
del train.data, val.data, test.data # TODO: why?
for f in list(train.fields.values()) + list(val.fields.values()) + list(test.fields.values()): # TODO: why?
if hasattr(f, "preprocessing"):
del f.preprocessing
self.train_size = len(train)
self.val_size = len(val)
self.test_size = len(test)
self.log(f"\n{self.train_size} sentences in the train split")
self.log(f"{self.val_size} sentences in the validation split")
self.log(f"{self.test_size} sentences in the test split")
self.node_count = train.node_counter
self.token_count = train.input_count
self.edge_count = train.edge_counter
self.no_edge_count = train.no_edge_counter
self.anchor_freq = train.anchor_freq
self.source_anchor_freq = train.source_anchor_freq if hasattr(train, "source_anchor_freq") else 0.5
self.target_anchor_freq = train.target_anchor_freq if hasattr(train, "target_anchor_freq") else 0.5
self.log(f"{self.node_count} nodes in the train split")
self.every_word_input_field.build_vocab(val, test, min_freq=1, specials=[self.pad, self.unk, self.sos, self.eos])
self.char_form_field.build_vocab(train, min_freq=1, specials=[self.pad, self.unk, self.sos, self.eos])
self.char_form_field.nesting_field.vocab = self.char_form_field.vocab
self.id_field.build_vocab(train, val, test, min_freq=1, specials=[])
self.label_field.build_vocab(train)
self.anchored_label_field.vocab = self.label_field.vocab
self.edge_label_field.build_vocab(train)
print(list(self.edge_label_field.vocab.freqs.keys()), flush=True)
self.char_form_vocab_size = len(self.char_form_field.vocab)
self.create_label_freqs(args)
self.create_edge_freqs(args)
self.log(f"Edge frequency: {self.edge_presence_freq*100:.2f} %")
self.log(f"{len(self.label_field.vocab)} words in the label vocabulary")
self.log(f"{len(self.anchored_label_field.vocab)} words in the anchored label vocabulary")
self.log(f"{len(self.edge_label_field.vocab)} words in the edge label vocabulary")
self.log(f"{len(self.char_form_field.vocab)} characters in the vocabulary")
self.log(self.label_field.vocab.freqs)
self.log(self.anchored_label_field.vocab.freqs)
self.train = torch.utils.data.DataLoader(
train,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
collate_fn=Collate(),
pin_memory=True,
drop_last=True
)
self.train_size = len(self.train.dataset)
self.val = torch.utils.data.DataLoader(
val,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
collate_fn=Collate(),
pin_memory=True,
)
self.val_size = len(self.val.dataset)
self.test = torch.utils.data.DataLoader(
test,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
collate_fn=Collate(),
pin_memory=True,
)
self.test_size = len(self.test.dataset)
if self.verbose:
batch = next(iter(self.train))
print(f"\nBatch content: {Batch.to_str(batch)}\n")
print(flush=True)
def create_label_freqs(self, args):
n_rules = len(self.label_field.vocab)
blank_count = (args.query_length * self.token_count - self.node_count)
label_counts = [blank_count] + [
self.label_field.vocab.freqs[self.label_field.vocab.itos[i]]
for i in range(n_rules)
]
label_counts = torch.FloatTensor(label_counts)
self.label_freqs = label_counts / (self.node_count + blank_count)
self.log(f"Label frequency: {self.label_freqs}")
def create_edge_freqs(self, args):
edge_counter = [
self.edge_label_field.vocab.freqs[self.edge_label_field.vocab.itos[i]] for i in range(len(self.edge_label_field.vocab))
]
edge_counter = torch.FloatTensor(edge_counter)
self.edge_label_freqs = edge_counter / self.edge_count
self.edge_presence_freq = self.edge_count / (self.edge_count + self.no_edge_count)
|