Larisa Kolesnichenko
commited on
Commit
•
7ded684
1
Parent(s):
7cf1737
Update README/model card
Browse files
README.md
CHANGED
@@ -9,4 +9,26 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec).
|
13 |
+
This model is an implementation of the paper "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph).
|
14 |
+
|
15 |
+
The current model uses the 'labeled-edge' graph encoding, and achieves the following results on the NoReC dataset:
|
16 |
+
|
17 |
+
| Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision |
|
18 |
+
|:----------------------------:|:----------:|:---------------------------:|
|
19 |
+
| 0.393 | 0.468 | 0.939 |
|
20 |
+
|
21 |
+
|
22 |
+
The model can be easily used for predicting sentiment tuples as follows:
|
23 |
+
|
24 |
+
```python
|
25 |
+
>>> import model_wrapper
|
26 |
+
>>> model = model_wrapper.PredictionModel()
|
27 |
+
>>> model.predict(['vi liker svart kaffe'])
|
28 |
+
[{'sent_id': '0',
|
29 |
+
'text': 'vi liker svart kaffe',
|
30 |
+
'opinions': [{'Source': [['vi'], ['0:2']],
|
31 |
+
'Target': [['svart', 'kaffe'], ['9:14', '15:20']],
|
32 |
+
'Polar_expression': [['liker'], ['3:8']],
|
33 |
+
'Polarity': 'Positive'}]}]
|
34 |
+
```
|