Spaces:
Running
on
A100
Running
on
A100
File size: 5,592 Bytes
de9d198 4771ff8 de9d198 d8abfee dc27de6 de9d198 4771ff8 de9d198 4771ff8 de9d198 4771ff8 de9d198 4771ff8 de9d198 5366491 de9d198 12fd800 de9d198 8f40af2 3a52a69 de9d198 5366491 de9d198 4771ff8 80e4491 de9d198 4771ff8 e9f4989 4771ff8 8f40af2 80e4491 d8abfee 80e4491 5e7f076 80e4491 4771ff8 de9d198 b464ed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
from compel import Compel, ReturnedEmbeddingsType
import torch
import os
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import psutil
from sfast.compilers.stable_diffusion_pipeline_compiler import (
compile,
CompilationConfig,
)
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained(model_id)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(
"latent-consistency/lcm-lora-sdxl",
use_auth_token=HF_TOKEN,
)
if device.type != "mps":
pipe.unet.to(memory_format=torch.channels_last)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
# Load LCM LoRA
config = CompilationConfig.Default()
config.enable_xformers = True
config.enable_triton = True
config.enable_cuda_graph = True
pipe = compile(pipe, config=config)
compel_proc = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
def predict(
prompt,
guidance,
steps,
seed=1231231,
randomize_bt=False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_bt:
seed = np.random.randint(0, 2**32 - 1)
generator = torch.manual_seed(seed)
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
results = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
generator=generator,
num_inference_steps=steps,
guidance_scale=guidance,
width=1024,
height=1024,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
raise gr.Error("NSFW content detected.")
return results.images[0], seed
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""# SDXL in 4 steps with Latent Consistency LoRAs
SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556).
""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
with gr.Row():
seed = gr.Slider(
randomize=True,
minimum=0,
maximum=12013012031030,
label="Seed",
step=1,
scale=5,
)
with gr.Group():
randomize_bt = gr.Checkbox(label="Randomize", value=False)
random_seed = gr.Textbox(show_label=False)
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running LCM-LoRAs it with `diffusers`
```bash
pip install diffusers==0.23.0
```
```py
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") #yes, it's a normal LoRA
results = pipe(
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
num_inference_steps=4,
guidance_scale=0.0,
)
results.images[0]
```
"""
)
inputs = [prompt, guidance, steps, seed, randomize_bt]
generate_bt.click(fn=predict, inputs=inputs, outputs=[image, random_seed])
demo.queue(api_open=False)
demo.launch(show_api=False) |