Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/ioclab/control_brightness
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 💻
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
|
|
1 |
---
|
2 |
+
title: Brightness ControlNet
|
3 |
emoji: 💻
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
app.py
CHANGED
@@ -5,7 +5,6 @@ import torch
|
|
5 |
|
6 |
controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float32, use_safetensors=True)
|
7 |
|
8 |
-
|
9 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
10 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float32,
|
11 |
)
|
@@ -16,19 +15,22 @@ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
16 |
pipe.enable_model_cpu_offload()
|
17 |
|
18 |
|
19 |
-
def infer(prompt, negative_prompt, num_inference_steps,
|
20 |
-
|
21 |
conditioning_image = Image.fromarray(conditioning_image)
|
22 |
-
|
|
|
|
|
23 |
|
24 |
output_image = pipe(
|
25 |
prompt,
|
26 |
conditioning_image,
|
27 |
-
height=
|
28 |
-
width=
|
29 |
num_inference_steps=num_inference_steps,
|
30 |
generator=generator,
|
31 |
negative_prompt=negative_prompt,
|
|
|
32 |
controlnet_conditioning_scale=1.0,
|
33 |
).images[0]
|
34 |
|
@@ -50,14 +52,36 @@ with gr.Blocks() as demo:
|
|
50 |
negative_prompt = gr.Textbox(
|
51 |
label="Negative Prompt",
|
52 |
)
|
53 |
-
num_inference_steps = gr.Slider(
|
54 |
-
10, 40, 20,
|
55 |
-
step=1,
|
56 |
-
label="Steps",
|
57 |
-
)
|
58 |
conditioning_image = gr.Image(
|
59 |
label="Conditioning Image",
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
submit_btn = gr.Button(
|
62 |
value="Submit",
|
63 |
variant="primary"
|
@@ -70,7 +94,7 @@ with gr.Blocks() as demo:
|
|
70 |
submit_btn.click(
|
71 |
fn=infer,
|
72 |
inputs=[
|
73 |
-
prompt, negative_prompt, num_inference_steps,
|
74 |
],
|
75 |
outputs=output
|
76 |
)
|
|
|
5 |
|
6 |
controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float32, use_safetensors=True)
|
7 |
|
|
|
8 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
9 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float32,
|
10 |
)
|
|
|
15 |
pipe.enable_model_cpu_offload()
|
16 |
|
17 |
|
18 |
+
def infer(prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed):
|
19 |
+
|
20 |
conditioning_image = Image.fromarray(conditioning_image)
|
21 |
+
conditioning_image = conditioning_image.convert('L')
|
22 |
+
|
23 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
24 |
|
25 |
output_image = pipe(
|
26 |
prompt,
|
27 |
conditioning_image,
|
28 |
+
height=size,
|
29 |
+
width=size,
|
30 |
num_inference_steps=num_inference_steps,
|
31 |
generator=generator,
|
32 |
negative_prompt=negative_prompt,
|
33 |
+
guidance_scale=guidance_scale,
|
34 |
controlnet_conditioning_scale=1.0,
|
35 |
).images[0]
|
36 |
|
|
|
52 |
negative_prompt = gr.Textbox(
|
53 |
label="Negative Prompt",
|
54 |
)
|
|
|
|
|
|
|
|
|
|
|
55 |
conditioning_image = gr.Image(
|
56 |
label="Conditioning Image",
|
57 |
)
|
58 |
+
with gr.Accordion('Advanced options', open=False):
|
59 |
+
with gr.Row():
|
60 |
+
num_inference_steps = gr.Slider(
|
61 |
+
10, 40, 20,
|
62 |
+
step=1,
|
63 |
+
label="Steps",
|
64 |
+
)
|
65 |
+
size = gr.Slider(
|
66 |
+
256, 768, 512,
|
67 |
+
step=128,
|
68 |
+
label="Size",
|
69 |
+
)
|
70 |
+
with gr.Row():
|
71 |
+
guidance_scale = gr.Slider(
|
72 |
+
label='Guidance Scale',
|
73 |
+
minimum=0.1,
|
74 |
+
maximum=30.0,
|
75 |
+
value=9.0,
|
76 |
+
step=0.1
|
77 |
+
)
|
78 |
+
seed = gr.Slider(
|
79 |
+
label='Seed',
|
80 |
+
minimum=-1,
|
81 |
+
maximum=2147483647,
|
82 |
+
step=1,
|
83 |
+
randomize=True
|
84 |
+
)
|
85 |
submit_btn = gr.Button(
|
86 |
value="Submit",
|
87 |
variant="primary"
|
|
|
94 |
submit_btn.click(
|
95 |
fn=infer,
|
96 |
inputs=[
|
97 |
+
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
|
98 |
],
|
99 |
outputs=output
|
100 |
)
|