Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
from clip_slider_pipeline import CLIPSliderFlux | |
from diffusers import FluxPipeline, AutoencoderTiny | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from diffusers.utils import load_image | |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
from diffusers.models.controlnet_flux import FluxControlNetModel | |
from diffusers.utils import export_to_gif | |
def process_controlnet_img(image): | |
controlnet_img = np.array(image) | |
controlnet_img = cv2.Canny(controlnet_img, 100, 200) | |
controlnet_img = HWC3(controlnet_img) | |
controlnet_img = Image.fromarray(controlnet_img) | |
# load pipelines | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", | |
vae=taef1, | |
torch_dtype=torch.bfloat16) | |
pipe.transformer.to(memory_format=torch.channels_last) | |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
#pipe.enable_model_cpu_offload() | |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) | |
base_model = 'black-forest-labs/FLUX.1-schnell' | |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha' | |
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda")) | |
def convert_to_centered_scale(num): | |
if num <= 0: | |
raise ValueError("Input must be a positive integer") | |
if num % 2 == 0: # even | |
start = -(num // 2 - 1) | |
end = num // 2 | |
else: # odd | |
start = -(num // 2) | |
end = num // 2 | |
return tuple(range(start, end + 1)) | |
def generate(concept_1, concept_2, scale, prompt, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5, | |
x_concept_1="", x_concept_2="", | |
avg_diff_x=None, | |
img2img_type = None, img = None, | |
controlnet_scale= None, ip_adapter_scale=None, | |
total_images=[], | |
progress=gr.Progress(track_tqdm=True) | |
): | |
slider_x = [concept_2, concept_1] | |
# check if avg diff for directions need to be re-calculated | |
print("slider_x", slider_x) | |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) | |
#torch.manual_seed(seed) | |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: | |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16) | |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
images = [] | |
high_scale = scale | |
low_scale = -1 * scale | |
for i in range(interm_steps): | |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) | |
image = clip_slider.generate(prompt, | |
width=768, | |
height=768, | |
#guidance_scale=guidance_scale, | |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
images.append(image) | |
canvas = Image.new('RGB', (256*interm_steps, 256)) | |
for i, im in enumerate(images): | |
canvas.paste(im.resize((256,256)), (256 * i, 0)) | |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" | |
scale_total = convert_to_centered_scale(interm_steps) | |
scale_min = scale_total[0] | |
scale_max = scale_total[-1] | |
scale_middle = scale_total.index(0) | |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) | |
avg_diff_x = avg_diff.cpu() | |
return x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update | |
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale, | |
avg_diff_x, | |
img2img_type = None, img = None, | |
controlnet_scale= None, ip_adapter_scale=None, total_images=[], progress=gr.Progress(track_tqdm=True)): | |
print("Hola", x) | |
avg_diff = avg_diff_x.cuda() | |
# for spectrum generation | |
images = [] | |
high_scale = x | |
low_scale = -1 * x | |
if img2img_type=="controlnet canny" and img is not None: | |
control_img = process_controlnet_img(img) | |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
elif img2img_type=="ip adapter" and img is not None: | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
else: | |
for i in range(interm_steps): | |
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1) | |
image = clip_slider.generate(prompt, | |
width=768, | |
height=768, | |
#guidance_scale=guidance_scale, | |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
images.append(image) | |
canvas = Image.new('RGB', (256*interm_steps, 256)) | |
for i, im in enumerate(images): | |
canvas.paste(im.resize((256,256)), (256 * i, 0)) | |
scale_total = convert_to_centered_scale(interm_steps) | |
scale_min = scale_total[0] | |
scale_max = scale_total[-1] | |
scale_middle = scale_total.index(0) | |
post_generation_slider_update = gr.update(minimum=scale_min, maximum=scale_max, visible=True) | |
return export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update | |
def update_pre_generated_images(slider_value, total_images): | |
number_images = len(total_images) | |
if(number_images > 0): | |
scale_tuple = convert_to_centered_scale(number_images) | |
return total_images[scale_tuple.index(slider_value)] | |
else: | |
return None | |
def reset_recalc_directions(): | |
return True | |
css_old = ''' | |
#group { | |
position: relative; | |
width: 600px; /* Increased width */ | |
height: 600px; /* Increased height */ | |
margin-bottom: 20px; | |
background-color: white; | |
} | |
#x { | |
position: absolute; | |
bottom: 20px; /* Moved further down */ | |
left: 30px; /* Adjusted left margin */ | |
width: 540px; /* Increased width to match the new container size */ | |
} | |
#y { | |
position: absolute; | |
bottom: 200px; /* Increased bottom margin to ensure proper spacing from #x */ | |
left: 20px; /* Adjusted left margin */ | |
width: 540px; /* Increased width to match the new container size */ | |
transform: rotate(-90deg); | |
transform-origin: left bottom; | |
} | |
#image_out { | |
position: absolute; | |
width: 80%; /* Adjust width as needed */ | |
right: 10px; | |
top: 10px; /* Increased top margin to clear space occupied by #x */ | |
} | |
''' | |
intro = """ | |
<div style="display: flex;align-items: center;justify-content: center"> | |
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="100" style="display: inline-block"> | |
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">Latent Navigation</h1> | |
</div> | |
<div style="display: flex;align-items: center;justify-content: center"> | |
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell πͺ</h3> | |
</div> | |
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block"> | |
<a href="https://github.com/linoytsaban/semantic-sliders" target="_blank">code</a> | |
| | |
<a href="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux?duplicate=true" target="_blank" style=" | |
display: inline-block; | |
"> | |
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a> | |
</p> | |
""" | |
css=''' | |
#strip, #gif{min-height: 50px} | |
''' | |
examples = [["winter", "summer", 1.25, "a dog in the park"]] | |
image_seq = gr.Image(label="Strip", elem_id="strip") | |
output_image = gr.Image(label="Gif", elem_id="gif") | |
post_generation_image = gr.Image(label="Generated Images") | |
post_generation_slider = gr.Slider(minimum=-2, maximum=2, value=0, step=1, interactive=False) | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(intro) | |
x_concept_1 = gr.State("") | |
x_concept_2 = gr.State("") | |
total_images = gr.State([]) | |
# y_concept_1 = gr.State("") | |
# y_concept_2 = gr.State("") | |
avg_diff_x = gr.State() | |
#avg_diff_y = gr.State() | |
recalc_directions = gr.State(False) | |
#with gr.Tab("text2image"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
concept_1 = gr.Textbox(label="1st direction to steer", placeholder="winter") | |
concept_2 = gr.Textbox(label="2nd direction to steer", placeholder="summer") | |
#slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
#slider_y = gr.Dropdown(label="Slider Y concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
prompt = gr.Textbox(label="Prompt", placeholder="A dog in the park") | |
x = gr.Slider(minimum=0, value=1.5, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)") | |
submit = gr.Button("Generate directions") | |
gr.Examples( | |
examples=examples, | |
inputs=[concept_1, concept_2, x, prompt], | |
fn=generate, | |
outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider], | |
cache_examples="lazy" | |
) | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
post_generation_image.render() | |
post_generation_slider.render() | |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=50): | |
image_seq.render() | |
with gr.Column(scale=2, min_width=50): | |
output_image.render() | |
# with gr.Row(): | |
# generate_butt = gr.Button("generate") | |
with gr.Accordion(label="advanced options", open=False): | |
iterations = gr.Slider(label = "num iterations for clip directions", minimum=0, value=200, maximum=400, step=1) | |
steps = gr.Slider(label = "num inference steps", minimum=1, value=4, maximum=8, step=1) | |
interm_steps = gr.Slider(label = "num of intermediate images", minimum=3, value=5, maximum=65, step=2) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=3.5, | |
) | |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
# with gr.Tab(label="image2image"): | |
# with gr.Row(): | |
# with gr.Column(): | |
# image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) | |
# slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
# slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
# img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny") | |
# prompt_a = gr.Textbox(label="Prompt") | |
# submit_a = gr.Button("Submit") | |
# with gr.Column(): | |
# with gr.Group(elem_id="group"): | |
# x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) | |
# y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
# output_image_a = gr.Image(elem_id="image_out") | |
# with gr.Row(): | |
# generate_butt_a = gr.Button("generate") | |
# with gr.Accordion(label="advanced options", open=False): | |
# iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) | |
# steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) | |
# guidance_scale_a = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.1, | |
# maximum=10.0, | |
# step=0.1, | |
# value=5, | |
# ) | |
# controlnet_conditioning_scale = gr.Slider( | |
# label="controlnet conditioning scale", | |
# minimum=0.5, | |
# maximum=5.0, | |
# step=0.1, | |
# value=0.7, | |
# ) | |
# ip_adapter_scale = gr.Slider( | |
# label="ip adapter scale", | |
# minimum=0.5, | |
# maximum=5.0, | |
# step=0.1, | |
# value=0.8, | |
# visible=False | |
# ) | |
# seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
# submit.click(fn=generate, | |
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y], | |
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image]) | |
submit.click(fn=generate, | |
inputs=[concept_1, concept_2, x, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images], | |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider]) | |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
#x.release(fn=update_scales, inputs=[x, prompt, seed, steps, interm_steps, guidance_scale, avg_diff_x, total_images], outputs=[output_image, image_seq, total_images, post_generation_image, post_generation_slider], trigger_mode='always_last') | |
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) | |
# submit_a.click(fn=generate, | |
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], | |
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a]) | |
post_generation_slider.change(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None) | |
if __name__ == "__main__": | |
demo.launch() |