Spaces:
Running
on
Zero
Running
on
Zero
add controlnet [wip]
Browse files
app.py
CHANGED
@@ -2,10 +2,33 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from clip_slider_pipeline import CLIPSliderXL
|
5 |
-
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoencoderKL
|
6 |
import time
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
10 |
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16)
|
11 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
@@ -13,18 +36,32 @@ clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda"))
|
|
13 |
|
14 |
pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
15 |
pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config)
|
16 |
-
pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
17 |
# scale = 0.8
|
18 |
# pipe_adapter.set_ip_adapter_scale(scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter,
|
21 |
-
device=torch.device("cuda"))
|
22 |
|
23 |
@spaces.GPU(duration=120)
|
24 |
def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
25 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
26 |
avg_diff_x_1, avg_diff_x_2,
|
27 |
-
avg_diff_y_1, avg_diff_y_2
|
|
|
|
|
28 |
start_time = time.time()
|
29 |
# check if avg diff for directions need to be re-calculated
|
30 |
print("slider_x", slider_x)
|
@@ -131,6 +168,7 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
132 |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
133 |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
|
|
134 |
prompt_a = gr.Textbox(label="Prompt")
|
135 |
submit_a = gr.Button("Submit")
|
136 |
with gr.Group(elem_id="group"):
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from clip_slider_pipeline import CLIPSliderXL
|
5 |
+
from diffusers import StableDiffusionXLPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, EulerDiscreteScheduler, AutoencoderKL
|
6 |
import time
|
7 |
import numpy as np
|
8 |
+
import cv2
|
9 |
+
from PIL import Image
|
10 |
|
11 |
+
|
12 |
+
def HWC3(x):
|
13 |
+
assert x.dtype == np.uint8
|
14 |
+
if x.ndim == 2:
|
15 |
+
x = x[:, :, None]
|
16 |
+
assert x.ndim == 3
|
17 |
+
H, W, C = x.shape
|
18 |
+
assert C == 1 or C == 3 or C == 4
|
19 |
+
if C == 3:
|
20 |
+
return x
|
21 |
+
if C == 1:
|
22 |
+
return np.concatenate([x, x, x], axis=2)
|
23 |
+
if C == 4:
|
24 |
+
color = x[:, :, 0:3].astype(np.float32)
|
25 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
26 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
27 |
+
y = y.clip(0, 255).astype(np.uint8)
|
28 |
+
return y
|
29 |
+
|
30 |
+
|
31 |
+
# load pipelines
|
32 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
33 |
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16)
|
34 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
36 |
|
37 |
pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
38 |
pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config)
|
39 |
+
#pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
40 |
# scale = 0.8
|
41 |
# pipe_adapter.set_ip_adapter_scale(scale)
|
42 |
+
clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda"))
|
43 |
+
|
44 |
+
controlnet = ControlNetModel.from_pretrained(
|
45 |
+
"xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet
|
46 |
+
torch_dtype=torch.float16
|
47 |
+
)
|
48 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
49 |
+
pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
|
50 |
+
"sd-community/sdxl-flash",
|
51 |
+
controlnet=controlnet,
|
52 |
+
vae=vae,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
)
|
55 |
+
clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
56 |
|
|
|
|
|
57 |
|
58 |
@spaces.GPU(duration=120)
|
59 |
def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
60 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
61 |
avg_diff_x_1, avg_diff_x_2,
|
62 |
+
avg_diff_y_1, avg_diff_y_2
|
63 |
+
img2img_type = None,
|
64 |
+
img = None):
|
65 |
start_time = time.time()
|
66 |
# check if avg diff for directions need to be re-calculated
|
67 |
print("slider_x", slider_x)
|
|
|
168 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
169 |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
170 |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
171 |
+
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="")
|
172 |
prompt_a = gr.Textbox(label="Prompt")
|
173 |
submit_a = gr.Button("Submit")
|
174 |
with gr.Group(elem_id="group"):
|