Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -25,15 +25,9 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
25 |
|
26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
27 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
28 |
-
#pipe.enable_model_cpu_offload()
|
29 |
-
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
30 |
|
|
|
31 |
|
32 |
-
base_model = 'black-forest-labs/FLUX.1-schnell'
|
33 |
-
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
34 |
-
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
35 |
-
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
36 |
-
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
37 |
|
38 |
@spaces.GPU(duration=200)
|
39 |
def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale,
|
@@ -47,7 +41,6 @@ def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guida
|
|
47 |
# check if avg diff for directions need to be re-calculated
|
48 |
print("slider_x", slider_x)
|
49 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
50 |
-
#torch.manual_seed(seed)
|
51 |
|
52 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
53 |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
@@ -66,7 +59,6 @@ def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guida
|
|
66 |
seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
67 |
|
68 |
|
69 |
-
#comma_concepts_x = ', '.join(slider_x)
|
70 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
71 |
|
72 |
avg_diff_x = avg_diff.cpu()
|
@@ -79,7 +71,6 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
|
|
79 |
img2img_type = None, img = None,
|
80 |
controlnet_scale= None, ip_adapter_scale=None,):
|
81 |
avg_diff = avg_diff_x.cuda()
|
82 |
-
torch.manual_seed(seed)
|
83 |
if img2img_type=="controlnet canny" and img is not None:
|
84 |
control_img = process_controlnet_img(img)
|
85 |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
@@ -90,27 +81,6 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
|
|
90 |
return image
|
91 |
|
92 |
|
93 |
-
|
94 |
-
@spaces.GPU
|
95 |
-
def update_x(x,y,prompt,seed, steps,
|
96 |
-
avg_diff_x, avg_diff_y,
|
97 |
-
img2img_type = None,
|
98 |
-
img = None):
|
99 |
-
avg_diff = avg_diff_x.cuda()
|
100 |
-
avg_diff_2nd = avg_diff_y.cuda()
|
101 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
102 |
-
return image
|
103 |
-
|
104 |
-
@spaces.GPU
|
105 |
-
def update_y(x,y,prompt,seed, steps,
|
106 |
-
avg_diff_x, avg_diff_y,
|
107 |
-
img2img_type = None,
|
108 |
-
img = None):
|
109 |
-
avg_diff = avg_diff_x.cuda()
|
110 |
-
avg_diff_2nd = avg_diff_y.cuda()
|
111 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
112 |
-
return image
|
113 |
-
|
114 |
def reset_recalc_directions():
|
115 |
return True
|
116 |
|
@@ -161,10 +131,7 @@ intro = """
|
|
161 |
</p>
|
162 |
"""
|
163 |
with gr.Blocks(css=css) as demo:
|
164 |
-
|
165 |
-
# ## Exploring CLIP text space with FLUX.1 schnell 🪐
|
166 |
-
# [[code](https://github.com/linoytsaban/semantic-sliders)]
|
167 |
-
# """)
|
168 |
gr.HTML(intro)
|
169 |
|
170 |
x_concept_1 = gr.State("")
|
@@ -177,7 +144,6 @@ with gr.Blocks(css=css) as demo:
|
|
177 |
|
178 |
recalc_directions = gr.State(False)
|
179 |
|
180 |
-
#with gr.Tab("text2image"):
|
181 |
with gr.Row():
|
182 |
with gr.Column():
|
183 |
slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
@@ -186,7 +152,7 @@ with gr.Blocks(css=css) as demo:
|
|
186 |
submit = gr.Button("find directions")
|
187 |
with gr.Column():
|
188 |
with gr.Group(elem_id="group"):
|
189 |
-
x = gr.Slider(minimum=-3, value=0, maximum=3.5, elem_id="x", interactive=False)
|
190 |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
191 |
output_image = gr.Image(elem_id="image_out")
|
192 |
# with gr.Row():
|
@@ -202,63 +168,9 @@ with gr.Blocks(css=css) as demo:
|
|
202 |
step=0.1,
|
203 |
value=5,
|
204 |
)
|
205 |
-
|
206 |
-
# label="correlation",
|
207 |
-
# minimum=0.1,
|
208 |
-
# maximum=1.0,
|
209 |
-
# step=0.05,
|
210 |
-
# value=0.6,
|
211 |
-
# )
|
212 |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
213 |
|
214 |
-
|
215 |
-
# with gr.Tab(label="image2image"):
|
216 |
-
# with gr.Row():
|
217 |
-
# with gr.Column():
|
218 |
-
# image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
219 |
-
# slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
220 |
-
# slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
221 |
-
# img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
|
222 |
-
# prompt_a = gr.Textbox(label="Prompt")
|
223 |
-
# submit_a = gr.Button("Submit")
|
224 |
-
# with gr.Column():
|
225 |
-
# with gr.Group(elem_id="group"):
|
226 |
-
# x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
|
227 |
-
# y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
228 |
-
# output_image_a = gr.Image(elem_id="image_out")
|
229 |
-
# with gr.Row():
|
230 |
-
# generate_butt_a = gr.Button("generate")
|
231 |
-
|
232 |
-
# with gr.Accordion(label="advanced options", open=False):
|
233 |
-
# iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
|
234 |
-
# steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
235 |
-
# guidance_scale_a = gr.Slider(
|
236 |
-
# label="Guidance scale",
|
237 |
-
# minimum=0.1,
|
238 |
-
# maximum=10.0,
|
239 |
-
# step=0.1,
|
240 |
-
# value=5,
|
241 |
-
# )
|
242 |
-
# controlnet_conditioning_scale = gr.Slider(
|
243 |
-
# label="controlnet conditioning scale",
|
244 |
-
# minimum=0.5,
|
245 |
-
# maximum=5.0,
|
246 |
-
# step=0.1,
|
247 |
-
# value=0.7,
|
248 |
-
# )
|
249 |
-
# ip_adapter_scale = gr.Slider(
|
250 |
-
# label="ip adapter scale",
|
251 |
-
# minimum=0.5,
|
252 |
-
# maximum=5.0,
|
253 |
-
# step=0.1,
|
254 |
-
# value=0.8,
|
255 |
-
# visible=False
|
256 |
-
# )
|
257 |
-
# seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
258 |
-
|
259 |
-
# submit.click(fn=generate,
|
260 |
-
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
261 |
-
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
262 |
submit.click(fn=generate,
|
263 |
inputs=[slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x],
|
264 |
outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image])
|
@@ -266,11 +178,6 @@ with gr.Blocks(css=css) as demo:
|
|
266 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
267 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
268 |
x.change(fn=update_scales, inputs=[x, prompt, seed, steps, guidance_scale, avg_diff_x], outputs=[output_image])
|
269 |
-
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
270 |
-
# submit_a.click(fn=generate,
|
271 |
-
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
|
272 |
-
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
|
273 |
-
|
274 |
|
275 |
if __name__ == "__main__":
|
276 |
demo.launch()
|
|
|
25 |
|
26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
27 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
|
|
|
|
28 |
|
29 |
+
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
@spaces.GPU(duration=200)
|
33 |
def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale,
|
|
|
41 |
# check if avg diff for directions need to be re-calculated
|
42 |
print("slider_x", slider_x)
|
43 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
|
|
44 |
|
45 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
46 |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
|
|
59 |
seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
60 |
|
61 |
|
|
|
62 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
63 |
|
64 |
avg_diff_x = avg_diff.cpu()
|
|
|
71 |
img2img_type = None, img = None,
|
72 |
controlnet_scale= None, ip_adapter_scale=None,):
|
73 |
avg_diff = avg_diff_x.cuda()
|
|
|
74 |
if img2img_type=="controlnet canny" and img is not None:
|
75 |
control_img = process_controlnet_img(img)
|
76 |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
|
|
81 |
return image
|
82 |
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
def reset_recalc_directions():
|
85 |
return True
|
86 |
|
|
|
131 |
</p>
|
132 |
"""
|
133 |
with gr.Blocks(css=css) as demo:
|
134 |
+
|
|
|
|
|
|
|
135 |
gr.HTML(intro)
|
136 |
|
137 |
x_concept_1 = gr.State("")
|
|
|
144 |
|
145 |
recalc_directions = gr.State(False)
|
146 |
|
|
|
147 |
with gr.Row():
|
148 |
with gr.Column():
|
149 |
slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
|
|
152 |
submit = gr.Button("find directions")
|
153 |
with gr.Column():
|
154 |
with gr.Group(elem_id="group"):
|
155 |
+
x = gr.Slider(minimum=-3, value=0, step=0.1, maximum=3.5, elem_id="x", interactive=False)
|
156 |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
157 |
output_image = gr.Image(elem_id="image_out")
|
158 |
# with gr.Row():
|
|
|
168 |
step=0.1,
|
169 |
value=5,
|
170 |
)
|
171 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
submit.click(fn=generate,
|
175 |
inputs=[slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x],
|
176 |
outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image])
|
|
|
178 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
179 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
180 |
x.change(fn=update_scales, inputs=[x, prompt, seed, steps, guidance_scale, avg_diff_x], outputs=[output_image])
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
demo.launch()
|