Spaces:
Sleeping
Sleeping
from dotenv import load_dotenv | |
import streamlit as st | |
import os | |
import sqlite3 | |
import google.generativeai as genai | |
# Configure API key | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
def get_gemini_response(question, prompt): | |
model = genai.GenerativeModel('gemini-pro') | |
response = model.generate_content([prompt[0], question]) | |
return response.text.strip() | |
def read_sql_query(sql, db): | |
conn = sqlite3.connect(db) | |
cur = conn.cursor() | |
cur.execute(sql) | |
rows = cur.fetchall() | |
conn.commit() | |
conn.close() | |
return rows | |
# Prompt for the application | |
prompt = [ | |
""" | |
You are an expert in converting English questions to SQL query! | |
The SQL database has the name STUDENT and has the following columns - NAME, CLASS, | |
SECTION \n\nFor example,\nExample 1 - How many entries of records are present?, | |
the SQL command will be something like this SELECT COUNT(*) FROM STUDENT ; | |
\nExample 2 - Tell me all the students studying in Data Science class?, | |
the SQL command will be something like this SELECT * FROM STUDENT | |
where CLASS="Data Science"; | |
""" | |
] | |
# Streamlit app | |
st.set_page_config(page_title="Text to SQL Query Converter") | |
st.title("Text to SQL Query Converter") | |
# User input | |
question = st.text_input("Enter your question:", key="input") | |
# Submit button | |
if st.button("Convert to SQL Query"): | |
if not question: | |
st.error("Please enter a question.") | |
else: | |
# Generate SQL query from the question | |
sql_query = get_gemini_response(question, prompt) | |
st.write("SQL Query:") | |
st.code(sql_query) | |
# Execute the SQL query and display results | |
try: | |
results = read_sql_query(sql_query, "student.db") | |
if results: | |
st.success("Query executed successfully. Results:") | |
st.table(results) | |
else: | |
st.warning("No results found.") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |