Spaces:
Sleeping
Sleeping
File size: 2,401 Bytes
7d9d14f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os
import dotenv
import openai
import pinecone
from langchain.document_loaders import Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import hashlib
from time import sleep
from helper import append_file
import json
## Read the environment variables
dotenv.load_dotenv('.env')
openai.api_key = os.getenv('OPENAI_API_KEY')
embedding_model = os.getenv('EMBEDDING_ENGINE')
debug_mode = os.getenv('DEBUG')
file_path = os.getenv('GAME_DOCS_FOLDER')
file_name = os.getenv('GAME_DOCS_FILE')
game_index = os.getenv('GAME_ID_INDEX')
pinecone_api_key = os.getenv('PINECONE_API_KEY')
pinecone_env = os.getenv('PINECONE_REGION')
pinecone_index = os.getenv('PINECONE_INDEX')
pinecone.init(
api_key=pinecone_api_key,
environment=pinecone_env
)
# check if index_name' index already exists (only create index if not)
if pinecone_index not in pinecone.list_indexes():
pinecone.create_index(pinecone_index, dimension=1536, metric="cosine", pods=1, pod_type="p1.x1")
sleep(3)
vector_db = pinecone.Index(pinecone_index)
def perform_embedding(doclist):
payload=list()
m = hashlib.md5()
# convert file_name to unique ID
m.update(file_name.encode('utf-8'))
game_id = m.hexdigest()[:12]
json_val = {"game_id":game_id, "game_file":file_name}
append_file(f"{file_path}/{game_index}",json.dumps(json_val))
for i in range(len(doclist)):
unique_id = game_id + "-" + str(i)
content = doclist[i].page_content
content = content.encode(encoding='ASCII',errors='ignore').decode()
response = openai.Embedding.create(model=embedding_model, input=content)
metadata = {'game_id': game_id, 'split_count': i, 'text': content}
vector = response['data'][0]['embedding']
payload.append((unique_id, vector, metadata))
return payload
def load_split_document():
loader = Docx2txtLoader(file_path + "/" + file_name)
word_doc_data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(word_doc_data)
if debug_mode == 'True':
print("Total count of splits created: " + str(len(docs)))
return docs
def upload_game_docs():
docs = load_split_document()
payload = perform_embedding(docs)
vector_db.upsert(payload)
if __name__ == '__main__':
upload_game_docs() |