File size: 7,165 Bytes
7d9d14f
 
ff9674c
838fecd
7d9d14f
 
 
 
 
 
 
 
 
ff9674c
7d9d14f
 
 
 
ff9674c
 
 
7d9d14f
 
 
 
 
 
 
 
 
ff9674c
 
 
7d9d14f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9674c
 
 
 
 
 
 
 
7d9d14f
4b0190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f0f83
 
 
 
 
 
 
ff9674c
c4f0f83
 
 
 
 
 
 
 
 
7d9d14f
 
 
 
 
 
148bfde
4dae8a8
 
148bfde
 
 
 
 
 
 
 
 
 
 
 
 
7d9d14f
4b0190f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from time import time, sleep
import datetime
import dotenv
import os
import openai
import json
import pinecone
from uuid import uuid4
from helper import open_file, save_file
import re
from langchain.memory import VectorStoreRetrieverMemory

## Read the environment variables
dotenv.load_dotenv('.env')
openai.api_key = os.getenv('OPENAI_API_KEY')
embedding_model = os.getenv('EMBEDDING_ENGINE')
convo_length = int(os.getenv('CONVO_LENGTH_TO_FETCH'))
llm_model = os.getenv('LLM_MODEL')
debug=False
if os.getenv('DEBUG') == 'True':
    debug=True

pinecone_api_key = os.getenv('PINECONE_API_KEY')
pinecone_env = os.getenv('PINECONE_REGION')
pinecone_index = os.getenv('PINECONE_INDEX')
pinecone.init(
    api_key=pinecone_api_key,  
    environment=pinecone_env 
)
vector_db = pinecone.Index(pinecone_index)
file_path = os.getenv('GAME_DOCS_FOLDER')
file_name = os.getenv('GAME_DOCS_FILE')
game_index = os.getenv('GAME_ID_INDEX')

def timestamp_to_datetime(unix_time):
    return datetime.datetime.fromtimestamp(unix_time).strftime("%A, %B %d, %Y at %I:%M%p %Z")


def perform_embedding(content):
    content = content.encode(encoding='ASCII',errors='ignore').decode()
    response = openai.Embedding.create(model=embedding_model, input=content)
    vector = response['data'][0]['embedding']
    return vector

def load_conversation(results):
    result = list()
    for m in results['matches']:
        result.append({'time1': m['metadata']['timestring'], 'text': m['metadata']['text']})
    ordered = sorted(result, key=lambda d: d['time1'], reverse = False)
    messages = [i['text'] for i in ordered]
    message_block = '\n'.join(messages).strip()
    return message_block
 

def call_gpt(prompt):
    max_retry = 5
    retry = 0
    prompt = prompt.encode(encoding='ASCII',errors='ignore').decode()
    while True:
        try:
            response = openai.ChatCompletion.create(
                    model=llm_model,
                    temperature=0.9,
               messages=[
                {"role": "user", "content": prompt}
              ]
            )
            
            text = response.choices[0].message.content
            text = re.sub('[\r\n]+', '\n', text)
            text = re.sub('[\t ]+', ' ', text)
            filename = '%s_gpt3.txt' % time()
            if not os.path.exists('gpt3_logs'):
                os.makedirs('gpt3_logs')
            save_file('gpt3_logs/%s' % filename, prompt + '\n\n==========\n\n' + text)
            response.choices[0].message.content = text
            return response
        except Exception as oops:
            retry += 1
            if retry >= max_retry:
                return "GPT3 error: %s" % oops
            print('Error communicating with OpenAI:', oops)
            sleep(1)


def start_game(game_id, user_id, user_input):
    payload = list()

    # Get user input, save it, vectorize it and save to pinecone
    timestamp = time()
    timestring = timestamp_to_datetime(timestamp)   
    unique_id = str(uuid4())
    vector = perform_embedding(user_input)
    metadata = {'speaker': 'USER', 'user_id': user_id, 'game_id': game_id, 'timestring': timestring, 'text': user_input}
    payload.append((unique_id, vector, metadata))
       
    
    # Search for relevant messages and return a response
    results=vector_db.query(vector=vector, top_k=convo_length, include_metadata=True, 
                            filter={
                                    "$and": [{ "user_id": { "$eq": user_id } }, { "game_id": { "$eq": game_id } }]
                             }
                          )
    conversation = load_conversation(results)
                                           

    # Populate prompt
    prompt_text = open_file(f"prompt_{game_id}_{user_id}.txt")
    prompt = open_file('prompt_response.txt').replace('<<PROMPT_VALUE>>', prompt_text).replace('<<CONVERSATION>>', conversation).replace('<<USER_MSG>>', user_input).replace('<<USER_VAL>>', user_id)

    # Generate response, vectorize
    llm_output_msg = call_gpt(prompt)
    llm_output = llm_output_msg.choices[0].message.content
    timestamp_op = time()
    timestring_op = timestamp_to_datetime(timestamp) 
    vector_op = perform_embedding(llm_output)
    unique_id_op = str(uuid4)
    metadata_op = {'speaker': 'BOT', 'user_id': user_id, 'game_id': game_id, 'timestring': timestring, 'text': llm_output}
    payload.append((unique_id_op, vector_op, metadata_op))

    # Upsert into the vector database
    vector_db.upsert(payload)
       
    return(llm_output)

def get_game_details(game_id):
    file_data = open_file(f"{file_path}/{game_index}")
    tmp_json = json.loads(file_data)
    for json_item in tmp_json["game_details"]:
        if json_item["game_id"] == game_id:
            return json_item
    return "Not Found"

def populate_prompt(game_id, splits):
    prompt_text = list()
    idlist = []
    for j in range(int(splits)):
       idlist.append(game_id + "-" + str(j)) 

    results=vector_db.fetch(ids=idlist)  
    for ids in idlist:
        prompt_text.append(results['vectors'][ids]["metadata"]["text"])

    whole_prompt = ' '.join(prompt_text).strip()
    return whole_prompt
    

def initialize_game(game_id, user_id, user_input):
    # game_details = get_game_details(game_id)
    # whole_prompt = populate_prompt(game_id, game_details["splits"])
    # if debug:
    #     print(whole_prompt[:1000])
    # whole_prompt = whole_prompt.replace("<<USER_INPUT_MSG>>", user_input)
    # if debug:
    #     print(whole_prompt[:1000])
    
    # llm_prompt_op = call_gpt(whole_prompt)
    # #print(llm_prompt_op.choices[0]["message"]["content"])
    # fname="prompt_" + game_id + "_" + user_id + ".txt"
    # save_file(fname, llm_prompt_op.choices[0]["message"]["content"])
    # return llm_prompt_op.choices[0]["message"]["content"]

    word_doc_contents = read_word_document(file_path + "/" + file_name)
    whole_prompt = word_doc_contents[0].replace("<<USER_INPUT_MSG>>", user_input)
      
    llm_prompt_op = call_gpt(whole_prompt)
    #print(llm_prompt_op.choices[0]["message"]["content"])
    fname="prompt_" + game_id + "_" + user_id + ".txt"
    save_file(fname, llm_prompt_op.choices[0]["message"]["content"])
    return llm_prompt_op.choices[0]["message"]["content"]

def generate_image_prompt(game_id, user_id, user_input):
    if 'You have a manual' in user_input:
        user_input = user_input.replace('You have a manual of this newly created simulation in your mind. Now what is the first thing you will do in this world?', '')
    payload = list()
    file_data = open_file(f"{file_path}/image_prompt_leo.txt").replace("<<PROMPT_FOR_IMG>>", user_input)
    leo_input_msg = call_gpt(file_data)
    leo_input = leo_input_msg.choices[0].message.content
    timestamp_op = time()
    timestring_op = timestamp_to_datetime(timestamp_op) 
    vector_op = perform_embedding(leo_input)
    unique_id_op = str(uuid4)
    metadata_op = {'speaker': 'BOT4LEO', 'user_id': user_id, 'game_id': game_id, 'timestring': timestring_op, 'text': leo_input}
    payload.append((unique_id_op, vector_op, metadata_op))

    return leo_input

if __name__ == '__main__':
    print("main")